USP22 deficiency in melanoma mediates resistance to T cells through IFNγ-JAK1-STAT1 signal axis.

Mol Ther

Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, People's Republic of China. Electronic address:

Published: June 2021

Genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated 9 (Cas9)-mediated loss-of-function screens are powerful tools for identifying genes responsible for diverse phenotypes. Here, we perturbed genes in melanoma cells to screen for genes involved in tumor escape from T cell-mediated killing. Multiple interferon gamma (IFNγ) signaling-related genes were enriched in melanoma cells resistant to T cell killing. In addition, deletion of the deubiquitinating protease ubiquitin specific peptidase 22 (USP22) in mouse melanoma (B16-OVA) cells decreased the efficacy of T cell-mediated killing, both in vitro and in vivo, while overexpression enhanced tumor-cell sensitivity to T (OT-I) cell-mediated killing. USP22 deficiency in both mouse and human melanoma cells showed impaired sensitivity to interferon pathway and USP22 was positively correlated with key molecules of interferon pathway in clinical melanoma samples. Mechanistically, USP22 may directly interact with signal transducer and activator of transcription 1 (STAT1), deubiquitinate it, and improve its stability in both human and mouse melanoma cells. Our findings identified a previously unknown function of USP22 and linked the loss of genes in tumor cells that are essential for escaping the effector function of CD8 T cells during immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8178440PMC
http://dx.doi.org/10.1016/j.ymthe.2021.02.018DOI Listing

Publication Analysis

Top Keywords

melanoma cells
16
usp22 deficiency
8
t cell-mediated killing
8
mouse melanoma
8
interferon pathway
8
melanoma
7
usp22
6
cells
6
genes
5
deficiency melanoma
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!