Attenuation of GARP expression on regulatory T cells by protein transport inhibitors.

J Immunol Methods

Baylor College of Medicine, Texas Children's Hospital, Section of Pediatric Immunology, Allergy, and Retrovirology, William T. Shearer Center for Human Immunobiology, 1102 Bates Avenue, Ste. 330, Houston, TX, USA. Electronic address:

Published: May 2021

An integrated understanding of the functional capacities of cells in the context of their physical parameters and molecular markers is increasingly demanded in immunologic studies. Regulatory T cells (Tregs) are a subpopulation of T cells involved in immune response modulation and mediating tolerance to self-antigen with their absence leading to a loss of tolerance. Glycoprotein repetitions A predominant (GARP) is a key marker for activated Tregs, but its detection may also be useful in determining the functional capacities of the cell. This study aims to deduce the optimal stimulation period and the impact of protein transport inhibitors (PTIs), commonly used in the detection of intracellular cytokines, on GARP detection. Through flow cytometric analysis we analyzed different cell culture conditions for optimal GARP expression on activated Tregs. Healthy donor PBMCs were stimulated with either Staphylococcal Enterotoxin B (SEB) or PMA/Ionomycin (PMA/Iono), in the presence and absence of PTIs monensin and/or brefeldin A (BFA) and GARP expression was assessed on CD4+ CD25+ FOXP3+ Tregs. The optimal stimulation period for the detection of GARP was highest at 24-h. Furthermore, we determined that GARP expression on Tregs is significantly reduced when cells are treated with the PTIs monensin and/or BFA following PMA/Iono stimulation. This effect was not seen following SEB stimulation. Therefore, due to the effects of PTIs, alternative methods should be considered when performing simultaneous analysis for cytokine expression and GARP expression on Tregs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jim.2021.112998DOI Listing

Publication Analysis

Top Keywords

garp expression
20
regulatory cells
8
protein transport
8
transport inhibitors
8
functional capacities
8
activated tregs
8
optimal stimulation
8
stimulation period
8
ptis monensin
8
monensin and/or
8

Similar Publications

Leaf vein, an essential part of leaf architecture, plays significant roles in shaping the proper leaf size. To date, the molecular mechanisms governing leaf development including leaf venation patterning remains poorly understood in birch. Here, we performed the genome-wide identification of homeodomain-like (HD-like) superfamily genes using phylogenetic analysis and revealed the functional role of a potential HD-like gene in leaf growth and development using transgenic technology and transcriptomic sequencing.

View Article and Find Full Text PDF

AcGLK1 promotes chloroplast division through regulating AcFtsZ1 in Actinidia chinensis.

Planta

December 2024

Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.

This study unravels a new regulatory member (AcGLK1) that regulates chloroplast division by affecting the expression levels of cytoskeletal filamenting temperature-sensitive Z (FtsZ) in Actinidia chinensis. GOLDEN 2-LIKE (GLK) transcription factor members of GARP subfamily play an irreplaceable role in regulating chloroplast biogenesis and development. Here we report the functional characterization of a novel GLK1 homolog (AcGLK1) isolated from kiwifruit (Actinidia chinensis cultivar 'Hongyang').

View Article and Find Full Text PDF

Purpose: Radiation therapy (RT) exerts its anti-tumour efficacy by inducing direct damage to cancer cells but also through modification of the tumour microenvironment (TME) by inducing immunogenic antitumor response. Conversely, RT also promotes an immunosuppressive TME notably through the recruitment of regulatory T cells (Tregs). Glycoprotein A repetitions predominant (GARP), a transmembrane protein highly expressed by activated Tregs, plays a key role in the activation of TGF-β and thus promotes the immunosuppressive action of Tregs.

View Article and Find Full Text PDF

Symbiotic nitrogen fixation (SNF) in legume-rhizobia serves as a sustainable source of nitrogen (N) in agriculture. However, the addition of inorganic N fertilizers significantly inhibits SNF, and the underlying mechanisms remain not-well understood. Here, we report that inorganic N disrupts iron (Fe) homeostasis in soybean nodules, leading to a decrease in SNF efficiency.

View Article and Find Full Text PDF

Dynamic allostery drives autocrine and paracrine TGF-β signaling.

Cell

October 2024

Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), San Francisco, CA, USA; Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA. Electronic address:

Article Synopsis
  • TGF-β is a crucial protein involved in development and immunity, usually expressed in a latent form associated with its prodomain and presented on immune cells via GARP.
  • Recent findings indicate that TGF-β can signal without needing to fully dissociate from its latent form, challenging existing beliefs.
  • New research using advanced microscopy shows that the binding of integrin αvβ8 can alter the structure of latent TGF-β, allowing it to activate signaling pathways without being released, and this mechanism may apply to other similar receptor/ligand systems.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!