The role of solvent molecular weight in shear thickening and shear jamming.

Soft Matter

James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois, USA.

Published: March 2021

The application of stress can drive a dense suspension into a regime of highly non-Newtonian response, characterized by discontinuous shear thickening (DST) and potentially shear jamming (SJ), due to the formation of a frictionally stabilized contact network. Investigating how the molecular weight of the suspending solvent affects the frictional particle-particle interactions, we report on experiments with suspensions of fumed silica particles in polyethylene glycol (PEG). Focusing on the monomer-to-oligomer limit, with n = 1 to 8 ethylene oxide repeat units, we find that increasing n enhances shear thickening under steady-state shear and even elicits rapidly propagating shear jamming fronts, as assessed by high-speed ultrasound imaging of impact experiments. We associate this behavior with a weakening of the solvation layers surrounding the particles as n is increased, which thereby facilitates the formation of frictional contacts. We argue that for n larger than the monomer-to-oligomer limit the trend reverses and frictional interactions are diminished, as observed in prior experiments. This reversal occurs because the polymeric solvent transitions from being enthalpically bound to entropically bound to the particle surfaces, which strengthens solvation layers.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0sm01350aDOI Listing

Publication Analysis

Top Keywords

shear thickening
12
shear jamming
12
molecular weight
8
monomer-to-oligomer limit
8
solvation layers
8
shear
7
role solvent
4
solvent molecular
4
weight shear
4
thickening shear
4

Similar Publications

A Highly Impact-Tolerant Textile-Based Lithium-Ion Battery.

ACS Appl Mater Interfaces

January 2025

Intelligent Polymer Research Institute, Faculty of Engineering and Information Sciences, Innovation Campus, University of Wollongong, Wollongong, NSW 2500, Australia.

Textile-based lithium-ion batteries (LIBs) are in great demand to power wearable electronics. They currently face a key safety challenge, particularly concerning mechanical abuse that could trigger thermal runaway, causing harm to individuals. Here, we report on Kevlar-fabric-based LIBs that can afford high impact tolerance while offering excellent electrochemical performance comparable to metal-foil-based cells.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how the rheology (flow behavior) of ingested fluids affects swallowing and the physiological responses during deglutition, specifically comparing xanthan gum (XG) and sodium carboxymethylcellulose gum (CMC) in healthy adults.
  • Results showed that CMC had significantly higher viscosity than XG at higher shear rates (300 s), leading to increased flow resistance during swallowing, indicated by higher intrabolus pressure and altered relaxation times of the upper esophageal sphincter (UES).
  • The findings suggest that the differences in shear viscosity of these fluids affect pharyngeal function during swallowing, highlighting the importance of fluid properties over standardized viscosity levels (IDDSI).
View Article and Find Full Text PDF

A simple model of the rheological curve of HPAM solutions at different temperatures.

Sci Rep

December 2024

Laboratorio de Fluidodinámica, Facultad de Ingeniería, Universidad de Buenos Aires/CONICET, Paseo Colón 850 CABA, Buenos Aires, Argentina.

Article Synopsis
  • The oil and gas industry is grappling with climate change and resource depletion, prompting a shift towards enhanced recovery methods like polymer flooding, which boasts higher recovery rates and lower emissions.
  • Existing physical models for predicting polymer flooding outcomes need improvement, particularly in accurately modeling the flow behavior of polymer solutions.
  • The new PAMA-T model expands the original PAMA technique to make it applicable across a wider temperature range (298-343 K), enabling better predictions of rheological properties using minimal data input from viscosity measurements.
View Article and Find Full Text PDF

Preparation and Performance Evaluation of CO Foam Gel Fracturing Fluid.

Gels

December 2024

Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China.

The utilization of CO foam gel fracturing fluid offers several significant advantages, including minimal reservoir damage, reduced water consumption during application, enhanced cleaning efficiency, and additional beneficial properties. However, several current CO foam gel fracturing fluid systems face challenges, such as complex preparation processes and insufficient viscosity, which limit their proppant transport capacity. To address these issues, this work develops a novel CO foam gel fracturing fluid system characterized by simple preparation and robust foam stability.

View Article and Find Full Text PDF

A green chemical shear-thickening polishing (GC-STP) method was studied to improve the surface precision and processing efficiency of monocrystalline silicon. A novel green shear-thickening polishing slurry composed of silica nanoparticles, alumina abrasive, sorbitol, plant ash, polyethylene glycol, and deionized water was formulated. The monocrystalline silicon was roughly ground using a diamond polishing slurry and then the GC-STP process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!