The tremendous increase of plastic production, its intensive usage in packaging, as transport material, and the insufficient management of plastic garbage have led to a rise in microplastic particles as an anthropogenic contaminant in our environment. To develop appropriate management and remediation strategies for this global pollution problem, reliable and consistent analytical procedures for measuring plastics in the complex matrices need to be designed. The applicability of an easy, robust and fast multi-step approach was tested on three sediment samples from riverine, beach and backwater areas of varying origin, grain size and organic matter content, and is reported here. The optimized method included grain size fractionation, density separation and μ-FTIR analyses. Identification was based on two complementary methods of μ -FTIR measurements, the Image mode for small microplastics (<1 mm) and the ATR method for bigger (1-5 mm) particles. The analyses revealed the identification of several polymers in various grain sizes at different pollution levels. Major findings are the dominance of PET particles and the highest frequency of microplastic particles in the midsize fraction of 100-500 μm. Generally, the method was able to reliably detect microplastic particles in several grain size fractions and down to very low contamination levels of approximately. ten particles per 50 g of sediments with different organic matter content and various grain size characteristics. Moreover, the presented multi-step approach represents a fast, easy and less cost-effective method as an alternative to more expensive and time-consuming methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2020.600 | DOI Listing |
Sci Rep
January 2025
Macau University of Science and Technology, Faculty of Innovation Engineering, Macau, 999078, China.
RGGB sensor arrays are commonly used in digital cameras and mobile photography. However, images of extreme dark-light conditions often suffer from insufficient exposure because the sensor receives insufficient light. The existing methods mainly employ U-Net variants, multi-stage camera parameter simulation, or image parameter processing to address this issue.
View Article and Find Full Text PDFZhongguo Xue Xi Chong Bing Fang Zhi Za Zhi
January 2025
School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
Objective: To construct a visual intelligent recognition model for in Yunnan Province based on the EfficientNet-B4 model, and to evaluate the impact of data augmentation methods and model hyperparameters on the recognition of .
Methods: A total of 400 and 400 snails were collected from Yongsheng County, Yunnan Province in June 2024, and snail images were captured following identification and classification of 300 and 300 snails. A total of 925 images and 1 062 snail images were collected as a dataset and divided into a training set and a validation set at a ratio of 8:2, while 352 images captured from the remaining 100 and 354 images from the remaining 100 snails served as an external test set.
Anal Chim Acta
February 2025
Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China. Electronic address:
Background: High-precision and broad-range pH detection is critical for health status assessment, such as signal transduction, enzyme activity, endocytosis, and cell proliferation and apoptosis. Although pH-responsive ratiometric fluorescent probes offer an effective pH monitoring strategy, their preparation often requires multi-step modification and decreases fluorescence efficiency and stability. Herein, we developed a simple method to prepare fluorescent Si dots with dual emission centers for high-precision and broad-range pH monitoring, and the detection of urease based on pH-responsive Si dots and pH monitoring in living cell was further explored.
View Article and Find Full Text PDFMetabolomics
January 2025
Owlstone Medical Ltd., Cambridge, UK.
Introduction: Breath Volatile organic compounds (VOCs) are promising biomarkers for clinical purposes due to their unique properties. Translation of VOC biomarkers into the clinic depends on identification and validation: a challenge requiring collaboration, well-established protocols, and cross-comparison of data. Previously, we developed a breath collection and analysis method, resulting in 148 breath-borne VOCs identified.
View Article and Find Full Text PDFBioData Min
January 2025
Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.
Background: The mechanistic pathways that give rise to the extreme symptoms exhibited by rare disease patients are complex, heterogeneous, and difficult to discern. Understanding these mechanisms is critical for developing treatments that address the underlying causes of diseases rather than merely the presenting symptoms. Moreover, the same dysfunctional series of interrelated symptoms implicated in rare recessive diseases may also lead to milder and potentially preventable symptoms in carriers in the general population.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!