The manipulation of blood flow in conjunction with skeletal muscle contraction has greatly informed the physiological understanding of muscle fatigue, blood pressure reflexes, and metabolism in humans. Recent interest in using intentional blood flow restriction (BFR) has focused on elucidating how exercise during periods of reduced blood flow affects typical training adaptations. A large initial appeal for BFR training was driven by studies demonstrating rapid increases in muscle size, strength, and endurance capacity, even when notably low intensities and resistances, which would typically be incapable of stimulating change in healthy populations, were used. The incorporation of BFR exercise into the training of strength- and endurance-trained athletes has recently been shown to provide additive training effects that augment skeletal muscle and cardiovascular adaptations. Recent observations suggest BFR exercise alters acute physiological stressors such as local muscle oxygen availability and vascular shear stress, which may lead to adaptations that are not easily attained with conventional training. This review explores these concepts and summarizes both the evidence base and knowledge gaps regarding the application of BFR training for athletes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/japplphysiol.00982.2020 | DOI Listing |
Appl Physiol Nutr Metab
January 2025
Coventry University, Centre for Sport Exercise and Life Sciences, Coventry, Warwickshire, United Kingdom of Great Britain and Northern Ireland;
Exercise and passive heating share some acute physiological responses. These include increases in body temperature, sweat rate, blood flow, heart rate, and redistribution of plasma and blood volume. These responses can vary depending on the heating modality or dose (e.
View Article and Find Full Text PDFBackground: Maintenance hemodialysis (MHD) is an effective treatment for patients with end-stage renal disease. Although MHD can prolong the survival of patients, their quality of life is lower and the fatality rate is higher. This work analyzed the factors related to the autogenous arteriovenous fistula (AVF)-like expansion of non-diabetic MHD patients by vascular ultrasound (VUS).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266003/572024, China.
The scarcity of effective neuroprotective agents and the presence of blood-brain barrier (BBB)-mediated extremely inefficient intracerebral drug delivery are predominant obstacles to the treatment of cerebral ischemic stroke (CIS). Herein, ROS-responsive borneol-based amphiphilic polymeric NPs are constructed by using traditional Chinese medicine borneol as functional blocks that served as surface brain-targeting ligand, inner hydrophobic core for efficient drug loading of membrane-permeable calcium chelator BAPTA-AM, and neuroprotective structural component. In MCAO mice, the nanoformulation (polymer: 3.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Neurology, Weill Cornell Medicine, New York, NY, United States of America.
Testosterone, an essential sex steroid hormone, influences brain health by impacting neurophysiology and neuropathology throughout the lifespan in both genders. However, human research in this area is limited, particularly in women. This study examines the associations between testosterone levels, gray matter volume (GMV) and cerebral blood flow (CBF) in midlife individuals at risk for Alzheimer's disease (AD), according to sex and menopausal status.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Clarifying the inceptive pathophysiology of hypertensive heart disease helps to impede the disease progression. Through coarctation of the infrarenal abdominal aorta (AA), we induced hypertension in minipigs and evaluated physiological reactions and morpho-functional changes of the heart. Moderate aortic coarctation was achieved with approximately 30 mmHg systolic pressure gradient in minipigs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!