A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Swallowing dysfunction following radiation to the rat mylohyoid muscle is associated with sensory neuron injury. | LitMetric

Radiation-based treatments for oropharyngeal and hypopharyngeal cancers result in impairments in swallowing mobility, but the mechanisms behind the dysfunction are not clear. The purpose of this study was to determine if we could establish an animal model of radiation-induced dysphagia in which mechanisms could be examined. We hypothesized that ) radiation focused at the depth of the mylohyoid muscle would alter normal bolus transport and bolus size and ) radiation to the mylohyoid muscle will induce an injury/stress-like response in trigeminal sensory neurons whose input might modulate swallow. Rats were exposed to 48 or 64 Gy of radiation to the mylohyoid given 8 Gy in 6 or 8 fractions. Swallowing function was evaluated by videofluoroscopy 2 and 4 wk following treatment. Neuronal injury/stress was analyzed in trigeminal ganglion by assessing activating transcription factor (ATF)3 and GAP-43 mRNAs at 2, 4, and 8 wk post treatment. Irradiated rats exhibited decreases in bolus movement through the pharynx and alterations in bolus clearance. In addition, ATF3 and GAP-43 mRNAs were upregulated in trigeminal ganglion in irradiated rats, suggesting that radiation to mylohyoid muscle induced an injury/stress response in neurons with cell bodies that are remote from the irradiated tissue. These results suggest that radiation-induced dysphagia can be assessed in the rat and radiation induces injury/stress-like responses in sensory neurons. Radiation-based treatments for head and neck cancer can cause significant impairments in swallowing mobility. This study provides new evidence supporting the possibility of a neural contribution to the mechanisms of swallowing dysfunction in postradiation dysphagia. Our data demonstrated that radiation to the mylohyoid muscle, which induces functional deficits in swallowing, also provokes an injury/stress-like response in the ganglion, innervating the irradiated muscle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262786PMC
http://dx.doi.org/10.1152/japplphysiol.00664.2020DOI Listing

Publication Analysis

Top Keywords

mylohyoid muscle
20
radiation mylohyoid
16
swallowing dysfunction
8
radiation-based treatments
8
impairments swallowing
8
swallowing mobility
8
radiation-induced dysphagia
8
injury/stress-like response
8
sensory neurons
8
trigeminal ganglion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!