Orientation Switching of Single Molecules on Surface Excited by Tunneling Electrons and Ultrafast Laser Pulses.

J Phys Chem Lett

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

Published: February 2021

We investigate the orientation switching of individual azobenzene molecules adsorbed on a Au(111) surface using a laser-assisted scanning tunneling microscope (STM). It is found that the rotational motion of the molecule can be regulated by both sample bias and laser wavelength. By measuring the switching rate and state occupation as a function of both bias voltage and photon energy, the threshold in sample bias and the minimal photon energy are derived. It has been revealed that the tip-induced local electrostatic potential remarkably contributes to the reduction in hopping barrier. We also find that the tunneling electrons and photons play distinct roles in controlling rotational dynamics of single azobenzene molecules on the surface, which are useful for understanding dynamic behaviors in similar molecular systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.0c03838DOI Listing

Publication Analysis

Top Keywords

orientation switching
8
molecules surface
8
tunneling electrons
8
azobenzene molecules
8
sample bias
8
photon energy
8
switching single
4
single molecules
4
surface excited
4
excited tunneling
4

Similar Publications

Unlike homogeneous metal complexes, achieving absolute control over reaction selectivity in heterogeneous catalysts remains a formidable challenge due to the unguided molecular adsorption/desorption on metal-surface sites. Conventional organic surface modifiers or ligands and rigid inorganic and metal-organic porous shells are not fully effective. Here, we introduce the concept of "ligand-porous shell cooperativity" to desirably reaction selectivity in heterogeneous catalysis.

View Article and Find Full Text PDF

Introduction to Memristive Mechanisms and Models.

Recent Pat Nanotechnol

January 2025

Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands.

The increase in computational power demand led by the development of Artificial Intelligence is rapidly becoming unsustainable. New paradigms of computation, which potentially differ from digital computation, together with novel hardware architecture and devices, are anticipated to reduce the exorbitant energy demand for data-processing tasks. Memristive systems with resistive switching behavior are under intense research, given their prominent role in the fabrication of memory devices that promise the desired hardware revolution in our intensive data-driven era.

View Article and Find Full Text PDF

Mechanical force-induced interlayer sliding in interfacial ferroelectrics.

Nat Commun

January 2025

Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai, 200241, China.

Moiré superlattices in two-dimensional stacks have attracted worldwide interest due to their unique electronic properties. A typical example is the moiré ferroelectricity, where adjacent moirés exhibit opposite spontaneous polarization that can be switched through interlayer sliding. However, in contrast to ideal regular ferroelectric moiré domains (equilateral triangles) built in most theoretical models, the unavoidable irregular moiré supercells (non-equilateral triangles) induced by external strain fields during the transfer process have been given less attention.

View Article and Find Full Text PDF

Background: Long-acting injectable (LAI) cabotegravir/rilpivirine (CAB/RPV) can improve adherence among adolescents and youth with HIV (AYHIV). We evaluated LAI CAB/RPV treatment outcomes among AYHIV.

Methods: An observational cohort study of AYHIV <25 years initiated LAI CAB/RPV from October 2021 to June 2024 as a standard of care.

View Article and Find Full Text PDF

In the early Drosophila embryo, germband elongation is driven by oriented cell intercalation through t1 transitions, where vertical (dorsal-ventral aligned) interfaces contract and then resolve into new horizontal (anterior-posterior aligned) interfaces. Here, we show that contractile events produce a continuous "rectification" of cell interfaces, in which interfaces systematically rotate toward more vertical orientations. As interfaces rotate, their behavior transitions from elongating to contractile regimes, indicating that the planar polarized identities of cell-cell interfaces are continuously re-interpreted in time depending on their orientation angle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!