Assembly and Exploration of a Single Cell Atlas of the Drosophila Larval Ventral Cord. Identification of Rare Cell Types.

Curr Protoc

Section on Cellular Communication, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland.

Published: February 2021

Single-cell RNA sequencing provides a new approach to an old problem: how to study cellular diversity in complex biological systems. This powerful tool has been instrumental in profiling different cell types and investigating, at the single-cell level, cell states, functions, and responses. However, mining these data requires new analytical and statistical methods for high-dimensional analyses that must be customized and adapted to specific goals. Here we present a custom multistage analysis pipeline which integrates modules contained in different R packages to ensure flexible, high-quality RNA-seq data analysis. We describe this workflow step by step, providing the codes, explaining the rationale for each function, and discussing the results and the limitations. We apply this pipeline to analyze different datasets of Drosophila larval ventral cords, identifying and describing rare cell types, such as astrocytes and neuroendocrine cells. This multistage analysis pipeline can be easily implemented by both novice and experienced scientists interested in neuronal and/or cellular diversity beyond the Drosophila model system. © 2021 US Government.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7899083PMC
http://dx.doi.org/10.1002/cpz1.37DOI Listing

Publication Analysis

Top Keywords

cell types
12
drosophila larval
8
larval ventral
8
rare cell
8
cellular diversity
8
multistage analysis
8
analysis pipeline
8
cell
5
assembly exploration
4
exploration single
4

Similar Publications

Aims: Bone marrow mononuclear cells (BM-MNCs) are a rich source of hematopoietic stem cells that have been widely used in experimental therapies for patients with various diseases, including fractures.Activation of angiogenesis is believed to be one of the major modes of action of BM-MNCs; however, the essential mechanism by which BM-MNCs activate angiogenesis remains elusive. This study aimed to demonstrate that BM-MNCs promote bone healing by enhancing angiogenesis through direct cell-to-cell interactions via gap junctions, in addition to a previously reported method.

View Article and Find Full Text PDF

Urinary obstruction causes injury to the renal medulla, impairing the ability to concentrate urine, and increasing the risk of progressive kidney disease. However, the regenerative capacity of the renal medulla after reversal of obstruction is poorly understood. To investigate this, we developed a mouse model of reversible urinary obstruction.

View Article and Find Full Text PDF

CD8+ T cells are critical for immune protection against severe COVID-19 during acute infection with SARS-CoV-2. However, the induction of antiviral CD8+ T cell responses varies substantially among infected people, and a better understanding of the mechanisms that underlie such immune heterogeneity is required for pandemic preparedness and risk stratification. In this study, we analyzed SARS-CoV-2-specific CD4+ and CD8+ T cell responses in relation to age, clinical status, and inflammation among patients infected primarily during the initial wave of the pandemic in France or Japan.

View Article and Find Full Text PDF

Background: Peripheral nerve sheath tumors (PNSTs) encompass entities with different cellular differentiation and degrees of malignancy. Spatial heterogeneity complicates diagnosis and grading of PNSTs in some cases. In malignant PNST (MPNST) for example, single cell sequencing data has shown dissimilar differentiation states of tumor cells.

View Article and Find Full Text PDF

Human Oncostatin M deficiency underlies an inherited severe bone marrow failure syndrome.

J Clin Invest

January 2025

Laboratory of Genome Dynamics in the Immune, INSERM UMR 116, Équipe Labellisée LIGUE 2023, Paris, France.

Oncostatin M (OSM) is a cytokine with the unique ability to interact with both the OSM receptor (OSMR) and the leukemia inhibitory factor receptor (LIFR). On the other hand, OSMR interacts with IL31RA to form the interleukin-31 receptor. This intricate network of cytokines and receptors makes it difficult to understand the specific function of OSM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!