Exposure to the industrial solvent trichloroethylene (TCE) has been associated with adverse pregnancy outcomes in humans and decreased fetal weight in rats. TCE kidney toxicity can occur through formation of reactive metabolites via its glutathione (GSH) conjugation metabolic pathway, largely unstudied in the context of pregnancy. To investigate the contribution of the GSH conjugation pathway and oxidative stress to TCE toxicity during pregnancy, we exposed rats orally to 480 mg TCE/kg/day from gestational day (GD) 6 to GD 16 with and without N-acetyl-L-cysteine (NAC) at 200 mg/kg/day or aminooxyacetic acid (AOAA) at 20 mg/kg/day as pre/co-treatments from GD 5-16. NAC is a reactive oxygen species scavenger that modifies the GSH conjugation pathway, and AOAA is an inhibitor of cysteine conjugate β-lyase (CCBL) in the GSH conjugation pathway. TCE decreased fetal weight, and this was prevented by AOAA but not NAC pre/co-treatment to TCE. Although AOAA inhibited CCBL activity in maternal kidney, it did not inhibit CCBL activity in maternal liver and placenta, suggesting that AOAA prevention of TCE-induced decreased fetal weight was due to CCBL activity inhibition in the kidneys but not liver or placenta. Unexpectedly, NAC pre/co-treatment with TCE, relative to TCE treatment alone, altered placental morphology consistent with delayed developmental phenotype. Immunohistochemical staining revealed that the decidua basale, relative to basal and labyrinth zones, expressed the highest abundance of CCBL1, flavin-containing monooxygenase 3, and cleaved caspase-3. Together, the findings show the differential effects of NAC and AOAA on TCE-induced pregnancy outcomes are likely attributable to TCE metabolism modulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8035313 | PMC |
http://dx.doi.org/10.1007/s00204-021-02991-8 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India.
Resistance by bacteria to available antibiotics is a threat to human health, which demands the development of new antibacterial agents. Considering the prevailing conditions, we have developed a library of new naphthalimide-coumarin moieties as broad-spectrum antibacterial agents to fight against awful drug resistance. Preliminary studies indicate that compounds and display excellent antibacterial activity against , exceeding the performance of marketed drug amoxicillin.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department of Medical Biosciences, University of the Western Cape, Bellville 7535, South Africa.
Adverse complications like metabolic disorders, neurotoxicity, and low central nervous system (CNS) penetration are associated with the long-term use of tenofovir disoproxil fumarate (TDF). Therefore, some modifications are required to enhance neurological functions using silver nanoparticles (AgNPs). This study aimed to evaluate the neuroprotective impact of silver nanoparticles (AgNPs)-conjugated TDF as AgNPs-TDF on the hippocampal microanatomy and some neuro-biomarkers of diabetic rats.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, 252059, China.
Erastin, as an effective ferroptosis inducer, has received extensive attention in anti-tumor research. To develop an oral nanocarrier for high efficient loading hydrophobic erastin, here we prepared a fluoro-liposome (FA-3 F-LS) by the self-assembly of the folic acid modified fluorinated amphiphiles-FA-3 F conjugates. The hydrophobic component of three perfluorooctyl chains endows the FA-3 F-LSs with high stability to resist the harsh gastrointestinal tract condition.
View Article and Find Full Text PDFEur J Med Chem
December 2024
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China. Electronic address:
Sci Rep
December 2024
Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India.
The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!