Plant growth-promoting microbes - an industry view.

Emerg Top Life Sci

NewLeaf Symbiotics, Saint Louis, Missouri, U.S.A.

Published: May 2021

Plant growth-promoting microbes can affect the plant microbiome, improving different properties of the plant such as yield and health. Many companies are commercializing these microbes as products called biologicals. Defining the product concept is one of the first and most important steps in making a biological product. Companies can use phenotyping and genotyping approaches to identify the microbe to make into a live bacterial product. Screening usually begins in the laboratory and often moves from high-throughput methods to more time and resource-intensive methods culminating in large scale field testing. Once the microbe is chosen, the fermentation process grows the bacteria to the necessary amounts, while the formulation process ensures a stable product in the desired form such as a liquid or powder. The products must show yield increases in the field over several seasons and conditions, but also must be easy to use and cost-effective to be adopted by farmers and other customers. Tying all these data together from the selection process to test results gives a customer a 'reason to believe' for the marketing and launch of a successful product.

Download full-text PDF

Source
http://dx.doi.org/10.1042/ETLS20200313DOI Listing

Publication Analysis

Top Keywords

plant growth-promoting
8
growth-promoting microbes
8
product
5
plant
4
microbes industry
4
industry view
4
view plant
4
microbes affect
4
affect plant
4
plant microbiome
4

Similar Publications

The lactic acid bacterial (LAB) species have proven multifaceted roles in sustainable agriculture due to their biologically safe nature, making them eco-friendly. However, their plant growth-improving mechanisms in stressed and non-stressed conditions are still under consideration. Thus, the current work has been planned to evaluate the drought tolerance potential and plant growth-promoting (PGP) traits of Loigolactobacillus coryniformis BCH-4 in Zea mays L.

View Article and Find Full Text PDF

Insights from a Genome-Wide Study of UADEC20: A Promising Strain for Phosphate Solubilization and Exopolysaccharides Production.

Curr Issues Mol Biol

January 2025

Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo C.P. 25280, Mexico.

The genome sequence of UADEC20 is presented, which is a strain isolated from agricultural fields in northeast Mexico. The genome was assembled into 13 scaffolds, constituting a total chromosome size of 4.2 Mbp, with two of the scaffolds representing closed plasmids.

View Article and Find Full Text PDF

Maize () is India's third-largest grain crop, serving as a primary food source for at least 30% of the population and sustaining 900 million impoverished people globally. The growing human population has led to an increasing demand for maize grains. However, maize cultivation faces significant challenges due to a variety of environmental factors, including both biotic and abiotic stresses.

View Article and Find Full Text PDF

Screening and identification of two novel phosphate-solubilizing strains and their role in enhancing phosphorus uptake in rice.

Front Microbiol

January 2025

Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, China.

Low phosphorus (P) use efficiency significantly impacts rice yields. An environmentally friendly approach to increase phosphorus absorption and utilization in rice involves the exploration of phosphorus-solubilizing fungal resources. This study aimed to isolate and characterize fungal strains from the rice rhizosphere and assess their phosphate solubilization capabilities, plant-growth-promoting (PGP) traits, and mechanisms involved.

View Article and Find Full Text PDF

Drought stress during the plant's growing season is a serious constraint to plant establishment in arid and semiarid Mediterranean ecosystems. Plant growth promoting rhizobacteria (PGPR) as environmentally friendly and innovative management approach can be used to produce seedlings better adapted to these environments. We tested native PGPR strains isolated from drought-tolerant tree and shrub species originating from two climatically contrasting regions: hot-dry (Dehloran) and milder Mediterranean climate (Ilam).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!