Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Morphological mutants of Trichoderma reesei were isolated following chemical or insertional mutagenesis. The mutant strains were shown to have reduced viscosity under industrially relevant fermentation conditions and to have maintained high specific productivity of secreted protein. This allowed higher biomass concentration to be maintained during the production phase and, consequently, increased volumetric productivity of secreted protein. The causative mutations were traced to four individual genes (designated sfb3, ssb7, seb1, and mpg1). We showed that two of the morphological mutations could be combined in a single strain to further reduce viscosity and enable a 100% increase in volumetric productivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9113505 | PMC |
http://dx.doi.org/10.1093/jimb/kuab014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!