Herein, we present a method to obtain particles composed of a segregated alloy of silver coated with gold. These particles are achieved through the controlled Ostwald ripening of small gold nanoparticles (NPs) on the surfaces of larger silver particles. The prepared segregated nanoalloyed colloids benefit from the advantages of gold and silver with none of their drawbacks. These platforms provide optical efficiencies which are superior to those of silver with the chemical resistance and biocompatibility of gold.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0nr08517kDOI Listing

Publication Analysis

Top Keywords

silver particles
8
silver
5
gold-spiked coating
4
coating silver
4
particles
4
particles cold
4
cold nanowelding
4
nanowelding method
4
method particles
4
particles composed
4

Similar Publications

Preparation, characterization, and antibacterial application of cross-linked nanoparticles composite films.

Food Chem X

January 2025

Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.

This study aimed to prepare a composite film by blending cross-linked tapioca starch (CLTS) with sodium alginate (SA), silver nanoparticles (AgNPs), and ZnO nanoparticles (ZnOs). The effects of SA, AgNPs, and ZnOs at different concentrations (1-3 wt%) on the mechanical properties, optical properties, thermal stability, and antibacterial activity of cross-linked starch films were also investigated. The structures of the films were examined by Fourier transform infrared spectroscopy and X-ray diffraction.

View Article and Find Full Text PDF

Integrating noble metal nanostructures, specifically silver nanoparticles, into sensor designs has proven to enhance sensor performance across key metrics, including response time, stability, and sensitivity. However, a critical gap remains in understanding the unique contributions of various synthesis parameters on these enhancements. This study addresses this gap by examining how factors such as temperature, growth time, and choice of capping agents influence nanostructure shape and size, optimizing sensor performance for diverse conditions.

View Article and Find Full Text PDF

Porous piezoelectric materials have attracted much interest in the fields of sensing and energy harvesting owing to their low dielectric constant, high piezoelectric voltage coefficient, and energy harvesting figure of merit. However, the introduction of porosity can decrease the piezoelectric coefficient, which restricts the enhancement of output current and power density. Herein, to overcome these challenges, an array-structured piezoelectric composite energy harvester with aligned porosity was constructed via a dual structure design strategy to enhance the output current and power density.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effectiveness and safety of dentifrices containing Nano silver fluoride (NSF) against the bacteria Streptococcus mutans, which causes tooth decay.
  • Researchers synthesized NSF particles and created dentifrices with varying concentrations of NSF, assessing their antimicrobial properties using an agar diffusion method and cytotoxicity on mouse macrophage cells.
  • Results showed that NSF dentifrices inhibited bacterial growth effectively while also evaluating their impact on cell viability to ensure safety for use in oral health products.
View Article and Find Full Text PDF

Plasmonic materials can be utilized as effective platforms to enhance luminescent signals of luminescent metal nanoclusters (LMNCs). Both surface enhanced fluorescence (SEF) and shell-isolated nanoparticle-enhanced fluorescence (SHINEF) strategies take advantage of the localized and increased external electric field created around the plasmonic metal surface when excited at or near their characteristic plasmonic resonance. In this context, we present an experimental and computational study of different plasmonic composites, (Ag) Ag@SiO2 and (Au) Au@SiO2 nanoparticles, which were used to enhance the luminescent signal of Au nanoclusters coated with glutathione (GSH) molecule (Au25GSH NCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!