DNAzyme-based gene therapy holds immense prospects for effectively treating severe diseases, yet is constrained with inefficient delivery and unconditional activation. Herein, we designed a bioinspired self-catabolic DNA nanocapsule for sustaining tumor-specific cascade activation of therapeutic DNAzyme. The exquisite DNAzyme was temporarily masked by the self-excising DNAzyme in the hierarchical rolling circle replication (RCR) nanostructures, thus stayed in an inactive state in physiological fluids. Through the multivalent tumor-anchoring aptamer strands, the RCR nanocapsule was specifically accumulated in cancer cells and was sequentially activated for motivating the ultimate DNAzyme-mediated gene silencing via the intelligent stimuli-responsive cascade DNAzyme activation. By virtue of the programmable RCR assembly strategy, our compact DNAzyme nanoplatform shows great promise for developing versatile smart gene therapeutics and personalized nanomedicines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202101474 | DOI Listing |
Methods Mol Biol
January 2025
Centro Nacional de Análisis Genómico, Barcelona, Spain.
The recent development of genetic lineage recorders, designed to register the genealogical history of cells using induced somatic mutations, has opened the possibility of reconstructing complete animal cell lineages. To reconstruct a cell lineage tree from a molecular recorder, it is crucial to use an appropriate reconstruction algorithm. Current approaches include algorithms specifically designed for cell lineage reconstruction and the repurposing of phylogenetic algorithms.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
During development, cells undergo a sequence of specification events to form functional tissues and organs. To investigate complex tissue development, it is crucial to visualize how cell lineages emerge and to be able to manipulate regulatory factors with temporal control. We recently developed TEMPO (Temporal Encoding and Manipulation in a Predefined Order), a genetic tool to label with different colors and genetically manipulate consecutive cell generations in vertebrates.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
CRISPR-Cas tools have recently been adapted for cell lineage tracing during development. Combined with single-cell RNA sequencing, these methods enable scalable lineage tracing with single-cell resolution. Here, I describe, scGESTALTv2, which combines cumulative CRISPR-Cas9 editing of a lineage barcode array with transcriptional profiling via droplet-based single-cell RNA sequencing (scRNA-seq).
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.
The CRISPR-activated repair lineage tracing (CARLIN) mouse line uses DNA barcoding to enable high-resolution tracing of cell lineages in vivo (Bowling et al, Cell 181, 1410-1422.e27, 2020). CARLIN mice contain expressed barcodes that allow simultaneous interrogation of lineage and gene expression information from single cells.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands.
ScarTrace is a CRISPR/Cas9-based genetic lineage tracing method that allows for uniquely barcoding the DNA of single cells at a target GFP sequence during developing zebrafish embryos. Single cells from barcoded adult zebrafish can be isolated from various tissues (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!