Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Current state-of-the-art fission product separations frequently involve multiple independent separation columns and sample manipulation processes; to couple these processes together, multiple evaporation and transposition steps are often required. The addition of these steps results in lengthy separation times, increased analysis costs, the potential for sample loss, and release of radioactive contamination. We report a new semiautomated method for the rapid separation of U, Zr, Mo, Ba, Sr, Te, and lanthanide fission products from irradiated uranium samples. Chemical yields for U, Zr, Ba, Sr, Te and the lanthanides from less than 3-day old uranium fission product samples are consistently greater than 90%, while those of Mo are greater than 70%. This method minimizes the use and addition of oxidation and reduction reagents that often cause issues with retention and separation. Uranium dissolution and fission product separations using this single-pass method are achievable in under 2 h, representing a significant improvement over traditional gravimetric uranium fission product separation procedures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.0c04130 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!