Many approaches have been examined to reversing multidrug resistance (MDR), but sub-optimal target-based strategies have limited their efficacy. Herein, we investigate microRNA (miR-21) suppression on the doxorubicin (DOX)-sensitisation of the DOX-resistant (PC3/DOX) cell line in prostate cancer (PCa). Expression levels of miR-21, P-glycoprotein (P-gp), MDR-1 and PTEN evaluated in PC3/DOX cancer cells by qRT-PCR and western blot analyses. The cytotoxic effects of transfected of miR-21 were assessed by MTT assay for 72 hr. Rhodamine123 (Rh123) assay was employed to define the activity of P-gp. Apoptosis was detected by Flow cytometry. As expected, miR-21 was expressed highly in PC3/DOX cells (p < 0.05). It was shown that miRNA-21 suppression considerably hindered PC3/DOX cell viability. miR-21 suppression dramatically downregulated P-gp expression and activity in DOX-resistance cells and abolished MDR by an increment of intracellular accumulation of DOX in PC3/DOX cells (p < 0.05). PTEN is a key modulator of the PI3K/Akt/P-gp cascade, which miR-21 suppression led to the upregulation of PTEN and sequentially lower-expression of P-gp that reversed MDR. Also, miR-21 repression enhanced the apoptosis rate of PC3/DOX cells. The findings of this paper contribute to the current understanding of the functions of miR-21 in MDR-reversing in PCa.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/and.14016 | DOI Listing |
J Transl Med
January 2025
Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, Wuhan, 430030, P.R. China.
Introduction: Prostate cancer is one of the most common cancers in the United States with a high mortality rate. In recent years, the traditional opinion about prostate microbiome was challenged. Although there still are some arguments, an escalating number of researchers are shifting their focus toward the microbiome within the prostate tumor environment.
View Article and Find Full Text PDFMol Med
January 2025
Department of Urology, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, 510920, Guangdong, People's Republic of China.
Prostate cancer (PCa) is a highly common type of malignancy and affects millions of men in the world since it is easy to recur or emerge therapy resistance. Therefore, it is urgent to find novel treatments for PCa patients. In the current study, we found that tegaserod maleate (TM), an FDA-approved agent, inhibited proliferation, colony formation, migration as well as invasion, caused the arrest of the cell cycle, and promoted apoptosis of PCa cells in vitro.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia.
Prostate cancer presents a major health issue, with its progression influenced by intricate molecular factors. Notably, the interplay between miRNAs and changes in transcriptomic patterns is not fully understood. Our study seeks to bridge this knowledge gap, employing computational techniques to explore how miRNAs and transcriptomic alterations jointly regulate the development of prostate cancer.
View Article and Find Full Text PDFInsights Imaging
January 2025
Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.
Purposes: The presence of clinically significant prostate cancer (csPCa) is equivocal for patients with prostate imaging reporting and data system (PI-RADS) category 3. We aim to develop deep learning models for re-stratify risks in PI-RADS category 3 patients.
Methods: This retrospective study included a bi-parametric MRI of 1567 consecutive male patients from six centers (Centers 1-6) between Jan 2015 and Dec 2020.
Eur J Drug Metab Pharmacokinet
January 2025
School of Pharmacy, National Defense Medical Center, Taipei, Taiwan.
Background And Objective: A gonadotropin-releasing hormone (GnRH) agonist such as leuprolide is widely used to achieve sustained suppression of testosterone levels, which play a critical role in the treatment of prostate cancer. Recent advances in drug delivery systems have led to the development of long-acting depot formulations, such as the 6-month intramuscular (IM) leuprolide formulation, which aim to simplify dosing and improve convenience for both patients and healthcare providers. Exploring extended dosing intervals for such formulations represents a promising approach to further optimize treatment regimens, potentially balancing efficacy with patient-centered care.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!