Structural evolution, magnetic moment, and thermochemical and spectral properties of NdSi (n = 8-20) nanoclusters were studied. Optimized structures for NdSi demonstrated that the configuration with quintet ground state prefers Nd-substituted for a Si of the most stable Si (n = 8-11) structure to Nd-linked configuration with Si tricapped trigonal prism subcluster (n = 12-19). Finally, the configuration prefers to Nd-encapsulated into Si cage framework (n = 20). For anion, the evolution at the quartet state prefers Nd-linked structure for n = 8-19 (excluded 9), and prefers Nd-encapsulated structure of n = 20. The spectral information including electron affinity, vertical detachment energy, and simulated photoelectron spectroscopy were also observed. The 4f electrons of Nd atom in NdSi with n = 8-10 hardly participate in bonding, but take part in remaining neutral clusters and all anionic NdSi clusters. The calculations of average bond energy, HOMO-LUMO gap, and chemical bonding analyses reveal that NdSi possesses perfect thermodynamic and ideal chemical stability, making it as the most appropriate constitutional units for novel multi-functional semiconductors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-020-04637-5 | DOI Listing |
BMC Chem
January 2025
Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Cairo, 11727, Egypt.
The depletion of fossil fuels and growing environmental concerns necessitate the exploration of renewable energy sources. Biodiesel, a promising alternative fuel derived from sustainable feedstock, has attracted considerable attention. This study investigates the catalytic esterification of oleic acid, a readily available fatty acid, with ethanol for biodiesel production using a novel heterogeneous catalyst, ZrO/AlO.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
School of Pharmacy, Xi'an Medical University, Xi'an, 710021, China; Institute of Medicine, Xi'an Medical University, Xi'an, 710021, China. Electronic address:
In this study, a convenient method was proposed for the synthesis of thymine-capped mesoporous silica nanoparticles (MSN) using strong hydrogen bonding in non-protonic solvent. Furthermore, application of the functionalized MSN for the recognition of mercuric ion (Hg) based on a paper-based platform with smartphone-assisted colorimetric detection was developed. The synthesized materials were characterized by techniques including X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FTIR), N adsorption-desorption, particle size analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
KAIST - Korea Advanced Institute of Science and Technology, Department of Chemistry, Center for Nanomaterials and Chemical Reaction, IBS, 373-1, Guseong Dong, Yuseong Gu, 305-701, Daejeon, KOREA, REPUBLIC OF.
Understanding how TiO2 interacts with CO2 at the molecular level is crucial in the CO2 reduction toward value-added energy sources. Here, we report in-situ observations of the CO2 activation process on the reduced TiO2(110) surface at room temperature using ambient pressure scanning tunneling microscopy. We found that oxygen vacancies (Vo) diffuse dynamically along the bridging oxygen (Obr) rows of the TiO2(110) surface under ambient CO2(g) environments.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China.
Partial wave analysis is key to interpretation of the photoionization of atoms and molecules on the attosecond timescale. Here we propose a heterodyne analysis approach, based on the delay-resolved anisotropy parameters to reveal the role played by high-order partial waves during photoionization. This extends the Reconstruction of Attosecond Beating By Interference of Two-photon Transitions technique into the few-photon regime.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
We have observed the laser-assisted dynamic interference in the electron spectra triggered by attosecond pulse trains. The fingerprints of finer interference fringes, much smaller than the laser photon energy, have been clearly identified experimentally. Our measurements are successfully reproduced by theoretical simulations utilizing the numerical solution to the time-dependent Schrödinger equation and the strong-field approximation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!