Due to traffic accidents, injuries, burns, congenital malformations and other reasons, a large number of patients with tissue or organ defects need urgent treatment every year. The shortage of donors, graft rejection and other problems cause a deficient supply for organ and tissue replacement, repair and regeneration of patients, so regenerative medicine came into being. Stem cell therapy plays an important role in the field of regenerative medicine, but it is difficult to fill large tissue defects by injection alone. The scientists combine three-dimensional (3D) printed bone tissue engineering scaffolds with stem cells to achieve the desired effect. These scaffolds can mimic the extracellular matrix (ECM), bone and cartilage, and eventually form functional tissues or organs by providing structural support and promoting attachment, proliferation and differentiation. This paper mainly discussed the applications of 3D printed bone tissue engineering scaffolds in stem cell regenerative medicine. The application examples of different 3D printing technologies and different raw materials are introduced and compared. Then we discuss the superiority of 3D printing technology over traditional methods, put forward some problems and limitations, and look forward to the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7868584 | PMC |
http://dx.doi.org/10.1016/j.reth.2021.01.007 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Department of Orthopedics, Suzhou Wujiang District Hospital of Traditional Chinese Medicine (Suzhou Wujiang District Second People's Hospital), Suzhou 215200, China.
Rotator cuff tears are the most common conditions in sports medicine and attract increasing attention. Scar tissue healing at the tendon-bone interface results in a high rate of retears, making it a major challenge to enhance the healing of the rotator cuff tendon-bone interface. Biomaterials currently employed for tendon-bone healing in rotator cuff tears still exhibit limited efficacy.
View Article and Find Full Text PDFJ Neurol Surg Rep
January 2025
Department of Neurosurgery, Hospital of the German Armed Forces, Westerstede, Germany.
Although osteosarcomas are the most frequent primary malignant bone tumors, the primary cranial manifestation of this condition is very rare with only a limited number of cases presented in the literature. We present the case of a 20-year-old male patient who underwent single-session surgical intervention for resection of right frontal osteosarcoma with a tailor-made craniotomy and cranioplasty using virtually designed 3D-printed templates and molds. Subsequently, the patient was treated according to the EURAMOS protocol and received adjuvant systemic chemotherapy.
View Article and Find Full Text PDFBME Front
January 2025
State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
This study aims to clarify the effects of bioceramic interface cues on macrophages. Recently, there have been many researches exploring the effects of interface topography cues on macrophage polarization and cytokine secretion. However, the effects and underlying mechanisms of bioceramic interface cues on macrophages still need exploring.
View Article and Find Full Text PDFWorld J Orthop
January 2025
Undip Biomechanics Engineering and Research Centre, Universitas Diponegoro, Semarang 50275, Central Java, Indonesia.
Total hip arthroplasty for adults with sequelae from childhood hip disorders poses significant challenges due to altered anatomy. The paper published by Oommen reviews the essential management strategies for these complex cases. This article explores the integration of finite element analysis (FEA) to enhance surgical precision and outcomes.
View Article and Find Full Text PDFBioact Mater
April 2025
Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China.
Addressing irregular bone defects is a formidable clinical challenge, as traditional scaffolds frequently fail to meet the complex requirements of bone regeneration, resulting in suboptimal healing. This study introduces a novel 3D-printed magnesium scaffold with hierarchical structure (macro-, meso-, and nano-scales) and tempered degradation (microscale), intricately customized at multiple scales to bolster bone regeneration according to patient-specific needs. For the hierarchical structure, at the macroscale, it can feature anatomic geometries for seamless integration with the bone defect; The mesoscale pores are devised with optimized curvature and size, providing an adequate mechanical response as well as promoting cellular proliferation and vascularization, essential for natural bone mimicry; The nanoscale textured surface is enriched with a layered double hydroxide membrane, augmenting bioactivity and osteointegration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!