Plant-specific WRKY transcription factors play important roles in regulating the expression of defense-responsive genes against pathogen attack. A multiple stress-responsive WRKY gene, ZmWRKY65, was identified in maize by screening salicylic acid (SA)-induced de novo transcriptomic sequences. The ZmWRKY65 protein was localized in the nucleus of mesophyll protoplasts. The analysis of the ZmWRKY65 promoter sequence indicated that it contains several stress-related transcriptional regulatory elements. Many environmental factors affecting the transcription of ZmWRKY65 gene, such as drought, salinity, high temperature and low temperature stress. Moreover, the transcription of ZmWRKY65 gene was also affected by the induction of defense related plant hormones such as SA and exogenous ABA. The results of seed germination and stomatal aperture assays indicated that transgenic Arabidopsis plants exhibit enhanced sensitivity to ABA and high concentrations of SA. Overexpression of ZmWRKY65 improved tolerance to both pathogen attack and abiotic stress in transgenic Arabidopsis plants and activated several stress-related genes such as RD29A, ERD10, and STZ as well as pathogenesis-related (PR) genes such as PR1, PR2 and PR5; these genes are involved in resistance to abiotic and biotic stresses in Arabidopsis. Together, this evidence implies that the ZmWRKY65 gene is involved in multiple stress signal transduction pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7889854PMC
http://dx.doi.org/10.1038/s41598-021-83440-5DOI Listing

Publication Analysis

Top Keywords

transgenic arabidopsis
12
zmwrky65 gene
12
overexpression zmwrky65
8
pathogen attack
8
transcription zmwrky65
8
arabidopsis plants
8
zmwrky65
7
transcription
4
zmwrky65 transcription
4
transcription factor
4

Similar Publications

Confers Iron Homeostasis Under Iron Deficiency in .

Int J Mol Sci

January 2025

Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.

Iron stress adversely impacts plants' growth and development. Transcription factors (TFs) receive stress signals and modulate plant tolerance by influencing the expression of related functional genes. In the present study, we investigated the role of an apple bHLH transcription factor in the tolerance to iron stresses.

View Article and Find Full Text PDF

In this study, the drought-responsive gene from barley was transferred to , and overexpression lines were obtained. The phenotypic characteristics of the transgenic plants, along with physiological indicators and transcription level changes of stress-related genes, were determined under drought treatment. Under drought stress, transgenic plants overexpressing exhibited enhanced drought tolerance and longer root lengths compared to wild-type plants.

View Article and Find Full Text PDF

Genome-Wide Analysis of the Hsf Gene Family in and Function in Thermotolerance.

Int J Mol Sci

December 2024

Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China.

Heat shock transcription factors (Hsfs) play an important role in response to high temperatures by binding to the promoter of the heat shock protein gene to promote its expression. As an important ornamental plant, the rose often encounters heat stress during the flowering process. However, there are few studies on the family in roses ().

View Article and Find Full Text PDF

Improving Ni Tolerance of Arabidopsis by Overexpressing Bacterial Gene Encoding a Membrane-Bound Exporter of Ni.

Int J Mol Sci

December 2024

Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.

The prerequisite for breeding a plant to be used in phytoremediation is its high tolerance to grow normally in soil contaminated by certain heavy metals. As mechanisms of plant uptake and transport of nickel (Ni) are not fully understood, it is of significance to utilize exogenous genes for improving plant Ni tolerance. In this study, from encoding an exporter of Ni and cobalt was overexpressed constitutively in , and the performance of transgenic plants was assayed under Ni stress.

View Article and Find Full Text PDF

, Encoding a Leucine-Rich Repeat Containing Receptor-like Protein, Is a Major Aphid () Resistance Gene in Sorghum.

Int J Mol Sci

December 2024

USDA-ARS Plant Science Research Laboratory, 1301N, Western Rd, Stillwater, OK 74075, USA.

Greenbug, , is one of the important cereal aphid pests of sorghum in the United States and other parts of the world. variety PI 607900 carries the resistance () gene that underlies plant resistance to greenbug biotype I (GBI). Now, the has been determined as the major gene conferring greenbug resistance based on the strong association of its presence with the resistance phenotype in sorghum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!