Urbanization and associated human activities have caused numerous changes to natural environments, including the loss of natural habitats and replacement with artificial structures. How these changes impact coastal marine biodiversity and ecosystem functioning is not well known. In this study, we examined the potential impacts of habitat changes by comparing species commonality and community structure (i.e., species richness, abundance, and functional composition) among artificial (a breakwater wall) and natural habitats (eelgrass bed, intertidal flat, and subtidal bottom) within a semi-enclosed coastal sea impacted by marine urbanization. We found considerable species overlap (i.e., high species sharing) among the eelgrass bed, intertidal flat, and subtidal bottom habitats. By contrast, the breakwater wall was a distinctive habitat with little overlap in species and functional groups with the other habitats, and was therefore a poor substitute for natural habitats. Our study suggests that marine urbanization degrades redundancy and inhibits the maintenance of biodiversity in coastal marine zones.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7889940 | PMC |
http://dx.doi.org/10.1038/s41598-021-83597-z | DOI Listing |
Environ Manage
January 2025
School of Public Policy and Urban Affairs, Northeastern University, Boston, MA, USA.
Riverine flooding is increasing in frequency and intensity, requiring river management agencies to consider new approaches to working with communities on flood mitigation planning. Communication and information sharing between agencies and communities is complex, and mistrust and misinformation arise quickly when communities perceive that they are excluded from planning. Subsequently, riverfront community members create narratives that can be examined as truth regimes-truths created and repeated that indicate how flooding and its causes are understood, represented, and discussed within their communities-to explain why flooding occurs in their area.
View Article and Find Full Text PDFSci Total Environ
January 2025
Environment Research Institute, Shandong University, Qingdao, Shandong 266237, China.
As an essential component of urban natural sources, isoprene has strong interactions and synergies with anthropogenic precursors (volatile organic compounds and nitrogen oxides) of ozone (O), influencing O formation in urban areas. However, the variability of these effects under different anthropogenic emission scenarios has not been fully understood. This study, utilizing observational data from Dezhou (a medium-sized city in the center of North China Plain) from May to September in both 2019 and 2020, and incorporating four future scenarios based on Shared Socioeconomic Pathways (SSP1-2.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang150090, P. R. China.
Newborn screening for acylcarnitine-related inherited metabolic diseases (IMDs) is a critical test after birth. Conventional extraction methods require shaking with heating, centrifugation, nitrogen blowing, redissolution, etc., and the total time is more than 1 h.
View Article and Find Full Text PDFSci Rep
January 2025
Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
Phytotoxic air pollutants such as atmospheric nitrogen dioxide (NO) are among the major stresses affecting tree photosynthesis in urban areas. We clarified the relationship between NO concentrations and photosynthetic function for three major urban trees, Prunus × yedoensis, Rhododendron pulchrum, and Ginkgo biloba, planted in Kyoto and surrounding cities, combining our published data and new data collected from 2020 to 2023. High NO increased long-term water use efficiency for all species.
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China.
The wind-blown sand protection system in the Shapotou section of the Baotou-Lanzhou Railway is a representative artificial ecosystem in a desert region. Over the past 70 years, this system has transformed mobile dunes into fixed dunes through vegetation succession, relying solely on natural rainfall without additional irrigation. However, ecosystem sustainability has been endangered by the emergence of numerous blowouts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!