We have studied the mechanisms by which meiotic arrest maintenance (MAM) with roscovitine, female sexual maturity, and the surrounded nucleoli (SN) chromatin configuration improve the competence of mouse oocytes by observing the expression of oocyte competence-related genes in non-surrounded nucleoli (NSN) and SN oocytes from prepubertal and adult mice following maturation with or without MAM. The results demonstrated that MAM with roscovitine significantly improved the developmental potential of adult SN and prepubertal NSN oocytes, but had no effect on that of prepubertal SN oocytes. Without MAM, while 40% of the 2-cell embryos derived from prepubertal SN oocytes developed into 4-cell embryos, none of the 2-cell embryos derived from prepubertal NSN oocytes did, and while 42% of the 4-cell embryos derived from adult SN oocytes developed into blastocysts, only 1% of the 4-cell embryos derived from prepubertal SN oocytes developed into blastocysts. Furthermore, MAM with roscovitine, SN configuration, and female sexual maturity significantly increased the mRNA levels of competence-beneficial genes and decreased those of competence-detrimental genes. In conclusion, our results suggest that MAM with roscovitine, SN chromatin configuration, and female sexual maturity improve oocyte competence by regulating the expression of competence-related genes, suggesting that Oct4, Stella, Mater, Zar1, Mapk8, and Bcl2 are oocyte competence-beneficial genes, whereas Foxj2, Ship1, and Bax are competence-detrimental genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8075721 | PMC |
http://dx.doi.org/10.1262/jrd.2020-142 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!