Hydrophobic micro-porous membrane such as polyvinylidene fluoride (PVDF) with excellent thermal-/chemical-stability and low surface energy has received extensive attention in industrial water treatment and sustainable energy conversion. However, undesirable contaminants caused by inevitable proteins or microorganisms adhesion may lead to a rapid loss of separation efficiency, which significantly deteriorate their porous structures and eventually limit their practical performance. Herein, we present a scalable approach for fabricating comb-like copolymer modified PVDF membranes (PVDF-PN@AgNPs) that prevent bacteria from proliferating on the surface and temperature-controlled release of adhered contaminants. Comb-like structured copolymers were imparted to a polydopamine (PDA)-treated PVDF membrane by Michael addition reaction, which enabled a covalent binding of comb-like structured copolymers to the membrane. Such unique structural design of grafted copolymer, containing hydrophilic side chain and temperature-responsive chain backbone, stably prevents bacteria adhesion and provides reversible surface wettability. Therefore, the resultant membranes were evaluated to prevent bacterial adhesion, high touch-killing efficiency and temperature-controlled contaminants release (~99% of protein and ~75% of bacteria). Moreover, with the collapse and stretch of grafted copolymer chain backbone, the synthetic membrane further reversibly adjusted inner micro-porous structure and surface wettability, which eventually helped to achieve variable water fluid transport efficiency. This study not only provides a feasible structural design for stably coping with the challenging of antifouling and subsequent contamination adhesion of PVDF membrane, but also potentially answers the significant gap between lab research advances and practical application, particularly in the industrial membrane field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2021.01.091 | DOI Listing |
Int J Nanomedicine
January 2025
Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
Purpose: The purpose of this study is to develop an innovative solution for chronic wounds in high-mobility areas, such as joints, where conventional treatments are hindered by passive healing mechanisms and the need for immobilization. By designing a micro-electro-Nanofiber dressing composed of piezoelectric polyvinylidene fluoride (PVDF) integrated with antimicrobial silver nanoparticles (AgNPs), this research aims to address the dual challenges of promoting effective wound healing and maintaining joint mobility.
Methods: Herein, we developed a novel micro-electro-Nanofiber dressing using electrospinning technology, incorporating polyvinylidene fluoride (PVDF) with silver nanoparticles (AgNPs).
Langmuir
January 2025
School of Chemistry and Chemical Engineering, State Key Laboratory of Polyolefins and Catalysis, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
Polyvinylidene fluoride (PVDF) latex nanoparticles serve as a versatile platform for surface modification due to their role as precursors in PVDF manufacturing. However, the strong chemical stability and poor compatibility of PVDF present significant challenges for effective surface modification. To address this, we developed a method that facilitates surface modification through chain entanglement.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China; Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China. Electronic address:
Monitoring cardiac rhythm is crucial for diagnosis of heart failure. However, the deficient sensitivity of polyvinylidene fluoride (PVDF) sensors impede their application in monitoring of cardiac rhythm due to the limited piezoelectricity. Here, doping of CoFeO and aligning fibers were jointly adopted to enhance the piezoelectricity of PVDF, attributed to the transformation of α-PVDF to β-PVDF from 51.
View Article and Find Full Text PDFRSC Adv
January 2025
School of Materials Design and Engineering, Beijing Institute of Fashion Technology Beijing China
Unidirectional moisture-conducting fabrics were prepared by electrospraying polyvinylidene fluoride (PVDF) and polyvinyl chloride (PVC) onto three green fabric substrates, namely cotton, hemp, and modal. Experiments were conducted to examine the effects of coating thickness, coating material, and substrate material on the moisture conductivity of the fabrics. The electrospraying technique was effective in forming uniform and strongly adhered PVDF and PVC coatings on the fabric substrates, and the coating thickness and material type had a significant effect on the fabric's moisture conductivity.
View Article and Find Full Text PDFSmall
January 2025
Faculty of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China.
Dielectric nanocomposites have garnered significant interest owing to their potential applications in energy storage. However, achieving high energy density (U) and charge/discharge efficiency (η) remains a challenge in their fabrication. In this paper, core-shell structured BaTiO@Polyvinylpyrrolidone (BT@PVP) nanoparticles are prepared, and incorporated into a semi-crystalline polyvinylidene fluoride (PVDF) matrix.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!