Metribuzin is a herbicide that inhibits photosynthesis and has been used for over 40 years. Its main target organ is the liver and to some extent the kidney in rats, dogs, and rabbits. Metribuzin shows a specific thyroxine (T4) profile in rat studies with T4 increases at low doses and T4 decreases at higher doses. Only the T4 decreases occur together with histopathological changes in the thyroid and weight changes of liver and thyroid. A set of experiments was conducted to investigate metribuzin's endocrine disruptor potential according to European guidance and regulations. The results indicate that a liver enzyme modulation, i.e. of the uridine 5'-diphospho-glucuronosyltransferase (UDPGT, UGT), is most likely responsible for both increased and decreased plasma thyroxine level and for thyroid histopathological observations. Animals with high T4 levels show low UGT activity, while animals with low T4 levels show high UGT activity. A causal relationship was inferred, since other potentially human-relevant mode of action (MOA) pathways were excluded in dedicated studies, i.e. inhibition of deiodinases (DIO), inhibition of thyroid peroxidase (TPO) or of the sodium importer system (NIS). This liver metabolism-associated MOA is considered not relevant for human hazard assessment, due to species differences in thyroid homeostasis between humans and rats and, more importantly, based on experimental data showing that metribuzin affects UGT activity in rat but not in human hepatocytes. Further, we discuss whether or not increased T4 levels in the rat, in the absence of histopathological changes, should be considered as adverse and therefore used as an appropriate hazard model for humans. Based on a weight of evidence approach, metribuzin should not be classified as an endocrine disruptor with regard to the thyroid modality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yrtph.2021.104884 | DOI Listing |
Int J Biol Macromol
January 2025
National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China.
Glycosylation is an effective means to alter the structure and properties of plant compounds, influencing the pharmacological activity of natural products (NPs) to obtain highly active NPs. In nature, glucosides are the most widely distributed, while other glycosides such as xylosides are less common and present in lower quantities. This is due to the scarcity of xylosyltransferases with substrate promiscuity in nature, and the modification of their catalytic function is also quite challenging.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China. Electronic address:
In order to investigate the impact of hot air (HA) treatment on the sugars and volatiles in postharvest nectarine fruit, nectarines were treated with HA at 40 °C for 4 h and stored at 1 °C for 35 days. Changes of sugars, free and glycosidically bound volatiles, β-glucosidase (β-Glu) activity, and the gene expression of UGT (UDP-glucosyltransferase) in nectarine fruit were determined. The results showed that compared with CK, HA treatment delayed the firmness decline of 48.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Research Institute, Suntory Global Innovation Center Ltd., Kyoto 618-8504, Japan.
Steviol glycosides (SGs) are noncaloric natural sweeteners found in the leaves of stevia (). These diterpene glycosides are biosynthesized by attaching varying numbers of monosaccharides, primarily glucose, to steviol aglycone. Rebaudioside (Reb) D and Reb M are highly glucosylated SGs that are valued for their superior sweetness and organoleptic properties, yet they are present in limited quantities in stevia leaves.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China.
Introduction: The residues of clomazone (Clo) can lead to phytotoxic symptoms such as foliar bleaching, reduced plant height, and decreased maize yields. Herbicide safener represent one of the most economically efficient strategies for mitigating herbicide-induced damage.
Methods: In this study, various seed treatments were implemented, including the immersion of maize seeds in water (CK), immersion in Cyprosulfamide (CSA), soil supplemented with clomazone (ClO) and CSA+ClO, evaluated physiological indicators, chlorophyll content, and qRT-PCR analyses of the maize plants were evaluated under the different treatments.
Pharmacol Res
December 2024
State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China. Electronic address:
Wogonin is a flavonoid with efficacy in ulcerative colitis (UC), while the mechanism of its action remains to be fully elucidated. Previous research has indicated that the activation of the triple recycling pathway significantly enhances the bioavailability of flavonoids. The efflux transporters, BCRP and MRP2 are critical regulatory molecules within the enterohepatic triple recycling pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!