Hyperspectral image super-resolution by fusing high-resolution multispectral image (HR-MSI) and low-resolution hyperspectral image (LR-HSI) aims at reconstructing high resolution spatial-spectral information of the scene. Existing methods mostly based on spectral unmixing and sparse representation are often developed from a low-level vision task perspective, they cannot sufficiently make use of the spatial and spectral priors available from higher-level analysis. To this issue, this paper proposes a novel HSI super-resolution method that fully considers the spatial/spectral subspace low-rank relationships between available HR-MSI/LR-HSI and latent HSI. Specifically, it relies on a new subspace clustering method named "structured sparse low-rank representation" (SSLRR), to represent the data samples as linear combinations of the bases in a given dictionary, where the sparse structure is induced by low-rank factorization for the affinity matrix. Then we exploit the proposed SSLRR model to learn the SSLRR along spatial/spectral domain from the MSI/HSI inputs. By using the learned spatial and spectral low-rank structures, we formulate the proposed HSI super-resolution model as a variational optimization problem, which can be readily solved by the ADMM algorithm. Compared with state-of-the-art hyperspectral super-resolution methods, the proposed method shows better performance on three benchmark datasets in terms of both visual and quantitative evaluation.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2021.3058590DOI Listing

Publication Analysis

Top Keywords

hyperspectral image
12
sparse low-rank
8
image super-resolution
8
spatial spectral
8
hsi super-resolution
8
low-rank
5
super-resolution
5
spatial-spectral structured
4
sparse
4
structured sparse
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!