Lewis acids have recently been recognized as catalysts enabling enantioselective photochemical transformations. Mechanistic studies on these systems are however rare, either due to their absorption at wavelengths shorter than 260 nm, or due to the limitations of theoretical dynamic studies for larger complexes. In this work, we overcome these challenges and employ sub-30-fs transient absorption in the UV, in combination with a highly accurate theoretical treatment on the XMS-CASPT2 level. We investigate 2-cyclohexenone and its complex to boron trifluoride and analyze the observed dynamics based on trajectory calculations including non-adiabatic coupling and intersystem crossing. This approach explains all ultrafast decay pathways observed in the complex. We show that the Lewis acid remains attached to the substrate in the triplet state, which in turn explains why chiral boron-based Lewis acids induce a high enantioselectivity in photocycloaddition reactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8252487PMC
http://dx.doi.org/10.1002/anie.202016653DOI Listing

Publication Analysis

Top Keywords

lewis acids
8
activation 2-cyclohexenone
4
2-cyclohexenone coordination
4
coordination mechanistic
4
mechanistic insights
4
insights theory
4
theory experiment
4
experiment lewis
4
acids recognized
4
recognized catalysts
4

Similar Publications

Lewis and Brønsted Acids Synergy in Photocatalytic Aerobic Alcohol Oxidations.

Angew Chem Int Ed Engl

January 2025

Fuzhou University, Chemistry, 523 Gongye Rd, Gulou, 350000, Fuzhou, CHINA.

Photocatalytic chemical transformations for green organic synthesis has attracted much interest. However, their development is greatly hampered by the lack of sufficient reactive sites on the photocatalyst surface for the adsorption and activation of substrate molecules. Herein, we demonstrate that the introduction of well-defined Lewis and Brønsted acid sites coexisting on the surface of TiO2 (SO42-/N-TiO2) creates abundant active adsorption sites for photoredox reactions.

View Article and Find Full Text PDF

Substitution and Electron Transfer in Diborane-Quinone Systems.

Chemistry

January 2025

Ruprecht-Karls-Universität Heidelberg, Institut für Anorganische Chemie, Im Neuenheimer Feld 270, 69120, Heidelberg, GERMANY.

The dual reactivity of boron compounds as Lewis acids and electron donors has spurred the development of a metallomimetic chemistry of boron compounds as a topical research theme. In this work we elaborate on the reaction of specially-designed diborane(4) compounds with quinones, as a prime example showing their dual (metallomimetic) chemistry as a Lewis acid and electron donor. The quinone is first coordinated to the diborane and then reduced by intramolecular electron transfer from the B-B bond to a quinone π* orbital.

View Article and Find Full Text PDF

Dirhodium-Catalyzed Asymmetric Transformations of Alkynes via Carbene Intermediates.

Acc Chem Res

January 2025

School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.

ConspectusFunctionalization of alkynes is an established cornerstone of organic synthesis. While numerous transition metals exhibit promising activities in the transformations of alkynes via π-insertion or oxidative cyclometalation, Lewis π-acids offer a different approach. By coordinating with alkynes through π-bonding, Lewis π-acids facilitate nucleophilic addition, leading to the formation of alkenyl metal species.

View Article and Find Full Text PDF

The selective oxidative cleavage and functionalization of C(OH)-C bonds in tertiary alcohols harbor immense feasibility in organic synthesis and enable the production of high value-added chemicals from renewable biomass. However, it remains a challenge, owing to the inherent kinetic inertness and thermodynamic stability of C(OH)-C bonds and the lack of C-H. Taking the huge potential and challenge of C(OH)-C bond activation and functionalization into consideration, herein, we show the first example of an inexpensive bifunctional ferric nitrate catalyst for catalytic direct oxidation of structurally distinct tertiary alcohols to esters with environmentally benign molecular oxygen as an oxidant and MeOH as a solvent, without the assistance of any additives.

View Article and Find Full Text PDF

The Electrochemical Iodination of Electron-Deficient Arenes.

Angew Chem Int Ed Engl

January 2025

Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129, Oldenburg, Germany.

The iodination of electron-deficient arenes and heteroarenes is a long-standing problem in organic synthesis. Herein we describe the electrochemical iodination in nitromethane with BuNI as iodine source and supporting electrolyte under Lewis acid-free conditions in the presence of small amounts of chloride anions. The electrochemically generated reagent could be applied for the iodination of halogenated arenes, aromatic aldehydes, acids, esters, ketones, as well as nitroarenes to afford the products in good to excellent yields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!