Recently, lateral flow assay (LFA) for nucleic acid detection has drawn increasing attention in the point-of-care testing fields. Due to its rapidity, easy implementation, and low equipment requirement, it is well suited for use in rapid diagnosis, food authentication, and environmental monitoring under source-limited conditions. This review will discuss two main research directions of lateral flow nucleic acid tests. The first one is the incorporation of isothermal amplification methods with LFA, which ensures an ultra-high testing sensitivity under non-laboratory conditions. The two most commonly used methodologies will be discussed, namely Loop-mediated Isothermal Amplification (LAMP) and Recombinase Polymerase Amplification (RPA), and some novel methods with special properties will also be introduced. The second research direction is the development of novel labeling materials. It endeavors to increase the sensitivity and quantifiability of LFA testing, where signals can be read and analyzed by portable devices. These methods are compared in terms of limits of detection, detection times, and quantifiabilities. It is anticipated that future research on lateral flow nucleic acid tests will focus on the integration of the whole testing process into a microfluidic system and the combination with molecular diagnostic tools such as clustered regularly interspaced short palindromic repeats to facilitate a rapid and accurate test.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0an02150d | DOI Listing |
Microbiol Spectr
January 2025
National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
Unlabelled: Bovine herpesvirus (BoHV) infection poses a significant threat to the healthy development of the cattle industry. BoHV-1 primarily causes infectious bovine rhinotracheitis, while BoHV-5 is associated with bovine necrotic meningoencephalitis. These two pathogens not only exhibit a high correlation in antigenicity and genetic background but, more importantly, can establish latent infections within the bovine ganglion.
View Article and Find Full Text PDFRev Cardiovasc Med
January 2025
Cardiac Surgery, University of Cincinnati Medical Center, Cincinnati, OH 45202, USA.
Background: The fluorescent dye indocyanine green (ICG) has been used to identify anatomical structures intraoperatively in coronary artery bypass grafting (CABG). This study aimed to evaluate the feasibility of using ICG to assess graft patency and territorial distribution of myocardial reperfusion during CABG.
Methods: Porcine arrested hearts (n = 18) were used to evaluate territorial distribution of native coronary arteries and of a coronary bypass constructed with porcine saphenous vein graft (SVG) using ICG.
J Exp Biol
January 2025
Michigan State University, Department of Fisheries and Wildlife, East Lansing, MI, USA.
Efficient navigation is crucial for the reproductive success of many migratory species, often driven by competing pressures to conserve energy and reduce predation risk. Little is known about how non-homing species achieve this balance. We show that sea lamprey (Petromyzon marinus), an ancient extant vertebrate, uses persistent patterns in hydro-geomorphology to quickly and efficiently navigate through complex ecosystems.
View Article and Find Full Text PDFWorld Neurosurg
January 2025
Department of Neurological Surgery, St. John's Neuroscience Institute, Tulsa, OK. Electronic address:
Middle cerebral artery (MCA) aneurysms remain excellent candidates for microsurgical treatment, despite proliferation of new endovascular tools. Nonetheless, patients desire less invasive options for permanent, durable treatment of their aneurysms; this is particularly the case for those presenting without subarachnoid hemorrhage, and those with multiple aneurysms that may require several surgical approaches. Keyhole craniotomies, when properly utilized in well-selected patients, allow for minimally invasive treatment of both ruptured and unruptured cerebral aneurysms, including those harboring bilateral aneurysms which may be treated from a single approach.
View Article and Find Full Text PDFNat Commun
January 2025
Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, USA.
Phase transitions in the mantle control its internal dynamics and structure. The post-spinel transition marks the upper-lower mantle boundary, where ringwoodite dissociates into bridgmanite plus ferropericlase, and its Clapeyron slope regulates mantle flow across it. This interaction has previously been assumed to have no lateral spatial variations, based on the assumption of a linear post-spinel boundary in pressure and temperature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!