Nanodiamonds (NDs) are a type of biocompatible nanomaterial with easily modified surfaces and are considered as promising candidates in biomedicine. In this work, the inhibition of tumor cell migration by carboxylated nanodiamonds (cNDs) was investigated. AFM-based single cell adhesion and F-actin staining experiments demonstrated that cNDs treatment could enhance cell adhesion and impair assembly of the cytoskeleton. The mechanism analysis of the regulatory protein expression level also proved that cNDs could inhibit the migration of Hela cells by preventing the epithelial-mesenchymal transition (EMT) process through the transforming growth factor β (TGF-β) signaling pathway. The in vivo pulmonary metastasis model also showed that cNDs effectively reduced the metastasis of murine B16 melanoma cells. In summary, cNDs have been demonstrated to inhibit cancer cell migration in vitro and decrease tumor metastasis in vivo. Therefore, cNDs might have potential utility for specific cancer treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c21332 | DOI Listing |
Sci Adv
January 2025
Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA.
Programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) interactions are targets for immunotherapies aimed to reinvigorate T cell function. Recently, it was documented that PD-L1 regulates dendritic cell (DC) migration through intracellular signaling events. In this study, we find that both preclinical murine and clinically available human PD-L1 antibodies limit DC migration.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany.
The characterization of phenotypes in cells or organisms from microscopy data largely depends on differences in the spatial distribution of image intensity. Multiple methods exist for quantifying the intensity distribution - or image texture - across objects in natural images. However, many of these texture extraction methods do not directly adapt to 3D microscopy data.
View Article and Find Full Text PDFPLoS Genet
January 2025
Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America.
Mitosis and meiosis have two mechanisms for regulating the accuracy of chromosome segregation: error correction and the spindle assembly checkpoint (SAC). We have investigated the function of several checkpoint proteins in meiosis I of Drosophila oocytes. Increased localization of several SAC proteins was found upon depolymerization of microtubules by colchicine.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada 18008, Spain.
Bacterial receptors feed into multiple signal transduction pathways that regulate a variety of cellular processes including gene expression, second messenger levels, and motility. Receptors are typically activated by signal binding to ligand-binding domains (LBDs). Cache domains are omnipresent LBDs found in bacteria, archaea, and eukaryotes, including humans.
View Article and Find Full Text PDFPLoS One
January 2025
Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China.
Hepatocellular carcinoma(HCC) has a high mortality and morbidity rate and seriously jeopardizes human life. Chemicals and chemotherapeutic agents have been experiencing problems such as side effects and drug resistance in the treatment of HCC, which cannot meet the needs of clinical treatment. Therefore, finding novel low-toxicity and high-efficiency anti-hepatocellular carcinoma drugs and exploring their mechanisms of action have become the current problems to be solved in the treatment of HCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!