Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Multiple Rydberg series converging to the O2+c4Σ-u state, accessed by 20-25 eV extreme ultraviolet (XUV) light, serve as important model systems for the competition between nuclear dissociation and electronic autoionization. The dynamics of the lowest member of these series, the 3sσg state around 21 eV, has been challenging to study owing to its ultra-short lifetime (<10 fs). Here, we apply transient wave-mixing spectroscopy with an attosecond XUV pulse to investigate the decay dynamics of this electronic state. Lifetimes of 5.8 ± 0.5 fs and 4.5 ± 0.7 fs at 95% confidence intervals are obtained for v = 0 and v = 1 vibrational levels of the 3s Rydberg state, respectively. A theoretical treatment of predissociation and electronic autoionization finds that these lifetimes are dominated by electronic autoionization. The strong dependence of the electronic autoionization rate on the internuclear distance because of two ionic decay channels that cross the 3s Rydberg state results in the different lifetimes of the two vibrational levels. The calculated lifetimes are highly sensitive to the location of the 3s potential with respect to the decay channels; by slight adjustment of the location, values of 6.2 and 5.0 fs are obtained computationally for the v = 0 and v = 1 levels, respectively, in good agreement with experiment. Overall, an intriguing picture of the coupled nuclear-electronic dynamics is revealed by attosecond XUV wave-mixing spectroscopy, indicating that the decay dynamics are not a simple competition between isolated autoionization and predissociation processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0fd00113a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!