We observed the crystallization dynamics of halide perovskite crystals (CH3NH3PbI3) by in situ heating wide-angle X-ray scattering measurements. As a result, we revealed that crystal growth occurs during the conversion of complexes to perovskite crystals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cc08325a | DOI Listing |
Angew Chem Int Ed Engl
January 2025
University of Fribourg Faculty of Science: Universite de Fribourg Faculte de sciences et de medecine, Adolphe Merkle Institue, Chemin des Verdiers 4, 1700, Fribourg, SWITZERLAND.
Metal halide perovskites have shown exceptional potential in converting solar energy to electric power in photovoltaics, yet their application is hampered by limited operational stability. This stimulated the development of hybrid layered (two-dimensional, 2D) halide perovskites based on hydrophobic organic spacers, templating perovskite slabs, as a more stable alternative. However, conventional organic spacer cations are electronically insulating, resulting in charge confinement within the inorganic slabs, thus limiting their functionality.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Instituto Politécnico Nacional ESIQIE, Mexico City 07700, Mexico.
The synthesis of ethylamine-based perovskites has emerged to attempt to replace the lead in lead-based perovskites for the alkaline earth elements barium and strontium, introducing chloride halide to prepare the perovskites in solar cell technology. X-ray diffraction studies were conducted, and EXPO2014 software was utilized to resolve the structure. Chemical characterization was performed using Fourier transform infrared spectroscopy, photophysical properties were analyzed through ultraviolet-visible spectroscopy, and photoluminescence properties were determined to confirm the perovskite characteristics.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute of Molecular Science, University of Valencia, c/Catedrático José Beltrán Martínez 2, Paterna, 46980, Valencia, Spain.
Energy transfer processes in nanohybrids are at the focal point of conceptualizing, designing, and realizing novel energy-harvesting systems featuring nanocrystals that absorb photons and transfer their energy unidirectionally to surface-immobilized functional dyes. Importantly, the functionality of these dyes defines the ultimate application. Herein, CsPbBr perovskite nanocrystals (NCs) are interfaced with zinc phthalocyanine (ZnPc) dyes featuring carboxylic acid.
View Article and Find Full Text PDFInorg Chem
January 2025
College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, PR China.
Lead halide perovskites have garnered interest in light-emitting diode (LED) applications due to their strong emission and tunable properties. However, conventional synthesis methods involve energy-intensive thermal processes and hazardous organic solvents, raising environmental concerns. In this study, we report a simple and eco-friendly mechanochemical approach that produces phase-pure blue-emitting CsCuI (emission at 440 nm) and yellow-emitting CsCuI (emission at 570 nm) phosphors through polarity modulation and control of grinding duration.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
Photodetectors based on lead halide perovskites often show excellent performance but poor stability. Herein, we demonstrate a photodetector based on MAPbBr single crystals passivated with an ultrathin layer of PbSO, which shows superior detectivity and on/off ratios compared to the control device due to the combined effect of lower surface traps, reduced recombination and low dark current. In addition, the device retained ∼56% of its initial * with an impressive on/off ratio of ∼801 after one year compared to ∼22% of * and an on/off ratio of ∼6 of the control device.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!