Objectives: Presently, the pandemic of COVID-19 has worsened the situation worldwide and received global attention. The United States of America have the highest numbers of a patient infected by this disease followed by Brazil, Russia, India and many other countries. Moreover, lots of research is going on to find out effective vaccines or medicine, but still, no potent vaccine or drug is discovered to cure COVID-19. As a consequence, many types of research have designated that computer-based studies, such as protein-ligand interactions, structural dynamics, and chembio modeling are the finest choice due to its low cost and time-saving features. Here, oxindole derivatives have been chosen for docking because of their immense pharmacological applications like antiviral, antidiabetic, anti-inflammatory, and so on. Molecular docking of 30 oxindole derivatives done on the crystallized structure of the protein (COVID-19 Mpro).
Methods: The process of docking, interaction, and binding the structure of ligand with protein has executed using Molegro Virtual Docker v.7.0.0 (MVD) and visualized the usage by Molegro Molecular Viewer v.7.0.0 (MMV).
Results: Among the 30 derivatives, the outcomes depicted better steric interaction and hydrogen bonding amongst OD-22 ligand, OD-16 ligand, OD-4 ligand, and OD-9 ligand (oxindole derivatives) with COVID-19. In addition to this, the comparative study of these four compounds with existing drugs that are under clinical trials shows comparatively good results in terms of its MolDock scores, H-bonding and steric interactions.
Conclusions: Hence, It is proposed that these four oxindole derivatives have good potential as a new drug against coronavirus as possible therapeutic agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/jbcpp-2020-0262 | DOI Listing |
Org Biomol Chem
January 2025
Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
A novel palladium-catalyzed allylic C-H alkylation of terminal olefins with 3-carboxamide oxindoles is described. A variety of new 3-carboxamide-3-allylation oxindoles with an all-carbon quaternary center were obtained in moderate to good yields (up to 99%). In addition, the asymmetric version of this reaction was also explored, providing moderate enantioselectivity.
View Article and Find Full Text PDFChemSusChem
January 2025
Polish Academy of Sciences, Institute of Organic Chemistry, Kasprzaka 44/52, 01-224, Warsaw, POLAND.
We demonstrate the application of mechanochemistry in the synthesis of indolone-based photoswitches (hemiindigos, hemithioindigos, and oxindoles) via Knoevenagel condensation reactions. Utilizing ball-milling and an organic base (piperidine) acting as catalyst and solvent for liquid assisted grinding (LAG) conditions, we achieve rapid, solvent-free transformations, obtaining a set of known and previously unreported photoswitches, including highly functional amino acid-based photoswitches, multichromophoric derivatives and photoswitchable cavitands based on resorcin[4]arenes. The reaction under mechanochemical conditions gives moderate-to-high yields and is highly stereoselective leading to Z-isomers of hemiindigos and hemithioindigos and E-isomers of oxindoles.
View Article and Find Full Text PDFMolecules
December 2024
College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China.
-Butyl hypochlorite was employed as a versatile reagent for chlorooxidation of indoles, chlorination of 2-oxindoles, and decarboxylative chlorination of the indole-2-carboxylic acids. Four types of products including 2-chloro-3-oxindoles, 2,2-dichloro-3-oxindoles, 3,3-dichloro-2-oxindoles, and 2,3-dichloroindoles could be selectively obtained in moderate to excellent yields by switching the substrates. Various synthetically useful functional groups, such as halogen atoms, cyano, nitro, and methoxycarbonyl groups, remain intact during the reactions.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
A visible-light-induced deoxygenative alkylation/cyclization of acrylamides with alcohols activated by CS has been developed by using xanthate salts as alkyl radical precursors in the presence of tricyclohexylphosphine. It proceeds through a tandem radical addition/cyclization process, and this protocol provides a reliable and practical approach to building the skeleton of 3,3-disubstituted oxindoles in moderate to good yields. Notable features of this reaction include readily available starting reagents, broad substrate scope and mild reaction conditions.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Laboratory of Nanobiotechnologies, Saint-Petersburg National Research Academic University of the Russian Academy of Sciences, Saint Petersburg 194021, Russia.
: A series of spiro-fused heterocyclic compounds containing cyclopropa[a]pyrrolizidine-2,3'-oxindole and 3-spiro[3-azabicyclo[3.1.0]-hexane]oxindole frameworks were synthesized and studied for their in vitro antiproliferative activity against human erythroleukemia (K562), cervical carcinoma (HeLa), acute T cell leukemia (Jurkat), melanoma (Sk-mel-2) and breast cancer (MCF-7) as well as mouse colon carcinoma (CT26) cell lines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!