Sensitive and specific SARS-CoV-2 antibody assays remain critical for community and hospital-based SARS-CoV-2 sero-surveillance. With the rollout of SARS-CoV-2 vaccines, such assays must be able to distinguish vaccine from natural immunity to SARS-CoV-2 and related human coronaviruses. Here, we developed and implemented multiplex microsphere-based immunoassay strategies for COVD-19 antibody studies that incorporates spike protein trimers of SARS-CoV-2 and the endemic seasonal human coronaviruses (HCoV), enabling high throughout measurement of pre-existing cross-reactive antibodies. We varied SARS-CoV-2 antigen compositions within the multiplex assay, allowing direct comparisons of the effects of spike protein, receptor-binding domain protein (RBD) and nucleocapsid protein (NP) based SARS-CoV-2 antibody detection. Multiplex immunoassay performance characteristics are antigen-dependent, and sensitivities and specificities range 92-99% and 94-100%, respectively, for human subject samples collected as early as 7-10 days from symptom onset. SARS-CoV-2 spike and RBD had a strong correlative relationship for the detection of IgG. Correlation between detectable IgG reactive with spike and NP also had strong relationship, however, several PCR-positive and spike IgG-positive serum samples were NP IgG-negative. This spike and NP multiplex immunoassay has the potential to be useful for differentiation between vaccination and natural infection induced antibody responses. We also assessed the induction of SARS-CoV-2 IgG cross reactions with SARS-CoV and MERS-CoV spike proteins. Furthermore, multiplex immunoassays that incorporate spike proteins of SARS-CoV-2 and HCoVs will permit investigations into the influence of HCoV antibodies on COVID-19 clinical outcomes and SARS-CoV-2 antibody durability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7885935PMC
http://dx.doi.org/10.1101/2021.02.10.21251518DOI Listing

Publication Analysis

Top Keywords

sars-cov-2
12
sars-cov-2 antibody
12
seasonal human
8
human coronaviruses
8
spike
8
spike protein
8
multiplex immunoassay
8
spike proteins
8
antibody
5
multiplex
5

Similar Publications

In this article, a nonlinear fractional bi-susceptible [Formula: see text] model is developed to mathematically study the deadly Coronavirus disease (Covid-19), employing the Atangana-Baleanu derivative in Caputo sense (ABC). A more profound comprehension of the system's intricate dynamics using fractional-order derivative is explored as the primary focus of constructing this model. The fundamental properties such as positivity and boundedness, of an epidemic model have been proven, ensuring that the model accurately reflects the realistic behavior of disease spread within a population.

View Article and Find Full Text PDF

The survival of B cells is compromised in kidney disease.

Nat Commun

December 2024

Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.

Antibody-mediated protection against pathogens is crucial to a healthy life. However, the recent SARS-CoV-2 pandemic has shown that pre-existing comorbid conditions including kidney disease account for compromised humoral immunity to infections. Individuals with kidney disease are not only susceptible to infections but also exhibit poor vaccine-induced antibody response.

View Article and Find Full Text PDF

Artificial intelligence-driven rational design of ionizable lipids for mRNA delivery.

Nat Commun

December 2024

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.

Lipid nanoparticles (LNPs) have proven effective in mRNA delivery, as evidenced by COVID-19 vaccines. Its key ingredient, ionizable lipids, is traditionally optimized by inefficient and costly experimental screening. This study leverages artificial intelligence (AI) and virtual screening to facilitate the rational design of ionizable lipids by predicting two key properties of LNPs, apparent pKa and mRNA delivery efficiency.

View Article and Find Full Text PDF

Trivalent recombinant protein vaccine induces cross-neutralization against XBB lineage and JN.1 subvariants: preclinical and phase 1 clinical trials.

Nat Commun

December 2024

Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.

The immune escape capacities of XBB variants necessitate the authorization of vaccines with these antigens. In this study, we produce three recombinant trimeric proteins from the RBD sequences of Delta, BA.5, and XBB.

View Article and Find Full Text PDF

Highly mutable pathogens generate viral diversity that impacts virulence, transmissibility, treatment, and thwarts acquired immunity. We previously described C19-SPAR-Seq, a high-throughput, next-generation sequencing platform to detect SARS-CoV-2 that we here deployed to systematically profile variant dynamics of SARS-CoV-2 for over 3 years in a large, North American urban environment (Toronto, Canada). Sequencing of the ACE2 receptor binding motif and polybasic furin cleavage site of the Spike gene in over 70,000 patients revealed that population sweeps of canonical variants of concern (VOCs) occurred in repeating wavelets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!