Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: We have previously identified tissue methylated DNA markers (MDMs) associated with pancreatic ductal adenocarcinoma (PDAC). In this case-control study, we aimed to assess the diagnostic performance of plasma MDMs for PDAC.
Experimental Design: Thirteen MDMs (, and ) were identified on the basis of selection criteria applied to results of prior tissue experiments and assays were optimized in plasma. Next, 340 plasma samples (170 PDAC cases and 170 controls) were assayed using target enrichment long-probe quantitative amplified signal method. Initially, 120 advanced-stage PDAC cases and 120 healthy controls were used to train a prediction algorithm at 97.5% specificity using random forest modeling. Subsequently, the locked algorithm derived from the training set was applied to an independent blinded test set of 50 early-stage PDAC cases and 50 controls. Finally, data from all 340 patients were combined, and cross-validated.
Results: The cross-validated area under the receiver operating characteristic curve (AUC) for the training set was 0.93 (0.89-0.96) for the MDM panel alone, 0.91 (95% confidence interval, 0.87-0.96) for carbohydrate antigen 19-9 (CA19-9) alone, and 0.99 (0.98-1) for the combined MDM-CA19-9 panel. In the test set of early-stage PDAC, the AUC for MDMs alone was 0.84 (0.76-0.92), CA19-9 alone was 0.87 (0.79-0.94), and combined MDM-CA19-9 panel was 0.90 (0.84-0.97) significantly better compared with either MDMs alone or CA19-9 alone ( = 0.0382 and 0.0490, respectively). At a preset specificity of 97.5%, the sensitivity for the combined panel in the test set was 80% (28%-99%) for stage I disease and 82% (68%-92%) for stage II disease. Using the combined datasets, the cross-validated AUC was 0.9 (0.86-0.94) for the MDM panel alone and 0.89 for CA19-9 alone (0.84-0.93) versus 0.97 (0.94-0.99) for the combined MDM-CA19-9 panel ( ≤ 0.0001). Overall, cross-validated sensitivity of MDM-CA19-9 panel was 92% (83%-98%), with an observed specificity of 92% at the preset specificity of 97.5%.
Conclusions: Plasma MDMs in combination with CA19-9 detect PDAC with significantly higher accuracy compared with either biomarker individually.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8102343 | PMC |
http://dx.doi.org/10.1158/1078-0432.CCR-20-0235 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!