The effective connectivity of brain networks can be assessed using functional magnetic resonance imaging (fMRI) to quantify the effects of local electrical microstimulation (EM) on distributed neuronal activity. The delivery of EM to specific brain regions, particularly with layer specificity, requires MRI compatible equipment that provides fine control of a stimulating electrode's position within the brain while minimizing imaging artifacts. To this end, we developed a microdrive made entirely of MRI compatible materials. The microdrive uses an integrated penetration grid to guide electrodes and relies on a microdrilling technique to eliminate the need for large craniotomies, further reducing implant maintenance and image distortions. The penetration grid additionally serves as a built-in MRI marker, providing a visible fiducial reference for estimating probe trajectories. Following the initial implant procedure, these features allow for multiple electrodes to be inserted, removed, and repositioned with minimal effort, using a screw-type actuator. To validate the design of the microdrive, we conducted an EM-coupled fMRI study with a male macaque monkey. The results verified that the microdrive can be used to deliver EM during MRI procedures with minimal imaging artifacts, even within a 7 Tesla (7T) environment. Future applications of the microdrive include neuronal recordings and targeted drug delivery. We provide computer aided design (CAD) templates and a parts list for modifying and fabricating the microdrive for specific research needs. These designs provide a convenient, cost-effective approach to fabricating MRI compatible microdrives for neuroscience research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7986532PMC
http://dx.doi.org/10.1523/ENEURO.0495-20.2021DOI Listing

Publication Analysis

Top Keywords

mri compatible
16
imaging artifacts
8
penetration grid
8
microdrive
7
mri
6
compatible customizable
4
customizable 3d-printable
4
3d-printable microdrive
4
microdrive neuroscience
4
neuroscience effective
4

Similar Publications

We present a case of a 72-year-old female patient with dyspnea and lipothymia. Echocardiography demonstrates an intracavitary cystic mass that fills almost all left atria causing supravalvular obstruction. The magnetic resonance image revealed a 53 × 47 × 48 mm heterogeneous mass with regular edges, tissue characterization suggested myxoma.

View Article and Find Full Text PDF

Iatrogenic cerebral amyloid angiopathy, a disease caused by contact with neurosurgical material or human growth hormone contaminated by beta-amyloid peptide (Aβ), has a prion-like transmission mechanism. We present a series of three patients under 55 years of age who underwent cranial surgery. All of them developed multiple cerebral hemorrhages, transient focal neurological deficits, and/or cognitive impairment after 3-4 decades.

View Article and Find Full Text PDF

FA-PEG Modified ZIF(Mn) Nanoparticles Loaded with Baicalin for Imaging-Guided Treatment of Melanoma in Mice.

Int J Nanomedicine

December 2024

Department of Dermatology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, 261031, People's Republic of China.

Background: Melanoma is an aggressive skin tumor with limited therapeutic options due to rapid proliferation, early metastasis, and poor prognosis. Baicalin (BA), a natural flavonoid, shows promise in inducing ferroptosis and apoptosis but faces challenges of poor solubility and bioavailability. To address these issues, we developed a multifunctional drug delivery system: manganese-doped ZIF-8 nanoparticles (ZIF(Mn)) loaded with BA and modified with folic acid (FA) and polyethylene glycol (PEG).

View Article and Find Full Text PDF

MMORF-FSL's MultiMOdal Registration Framework.

Imaging Neurosci (Camb)

March 2024

Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.

We present MMORF-FSL's MultiMOdal Registration Framework-a newly released nonlinear image registration tool designed primarily for application to magnetic resonance imaging (MRI) images of the brain. MMORF is capable of simultaneously optimising both displacement and rotational transformations within a single registration framework by leveraging rich information from multiple scalar and tensor modalities. The regularisation employed in MMORF promotes local rigidity in the deformation, and we have previously demonstrated how this effectively controls both shape and size distortion, leading to more biologically plausible warps.

View Article and Find Full Text PDF

Isocitrate dehydrogenase (IDH) mutant gliomas are classified as astrocytoma or oligodendroglioma based on the recent application of mutation, mutation, and 1p/19q co-deletion. Astrocytomas classically show and mutations, whereas oligodendrogliomas are defined by 1p/19q co-deletion. However, there are reports of gliomas that harbor both astrocytoma and oligodendroglioma morphologically and molecularly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!