Building Organs Using Tissue-Specific Microenvironments: Perspectives from a Bioprosthetic Ovary.

Trends Biotechnol

Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, and Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. Electronic address:

Published: August 2021

Recent research in tissue engineering and regenerative medicine has elucidated the importance of the matrisome. The matrisome, effectively the skeleton of an organ, provides physical and biochemical cues that drive important processes such as differentiation, proliferation, migration, and cellular morphology. Leveraging the matrisome to control these and other tissue-specific processes will be key to developing transplantable bioprosthetics. In the ovary, the physical and biological properties of the matrisome have been implicated in controlling the important processes of follicle quiescence and folliculogenesis. This expanding body of knowledge is being applied in conjunction with new manufacturing processes to enable increasingly complex matrisome engineering, moving closer to emulating tissue structure, composition, and subsequent functions which can be applied to a variety of tissue engineering applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8967215PMC
http://dx.doi.org/10.1016/j.tibtech.2021.01.008DOI Listing

Publication Analysis

Top Keywords

tissue engineering
8
matrisome
5
building organs
4
organs tissue-specific
4
tissue-specific microenvironments
4
microenvironments perspectives
4
perspectives bioprosthetic
4
bioprosthetic ovary
4
ovary tissue
4
engineering regenerative
4

Similar Publications

Aims: To identify differences in CT-derived perivascular (PVAT) and epicardial adipose tissue (EAT) characteristics that may indicate inflammatory status differences between post-treatment acute myocardial infarction (AMI) and stable coronary artery disease (CAD) patients.

Methods And Results: A cohort of 205 post-AMI patients (age 59.8±9.

View Article and Find Full Text PDF

Protein-Protein Interactions (PPIs) are a key interface between virus and host, and these interactions are important to both viral reprogramming of the host and to host restriction of viral infection. In particular, viral-host PPI networks can be used to further our understanding of the molecular mechanisms of tissue specificity, host range, and virulence. At higher scales, viral-host PPI screening could also be used to screen for small-molecule antivirals that interfere with essential viral-host interactions, or to explore how the PPI networks between interacting viral and host genomes co-evolve.

View Article and Find Full Text PDF

Chemiluminescent Probe for Enhanced Visualization of Renal Ischemia-Reperfusion Injury via Pyroglutamate Aminopeptidase-1 Activation.

Anal Chem

January 2025

Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.

The absence of an effective imaging tool for diagnosing renal ischemia-reperfusion injury (RIRI) severely delays its treatment, and currently, no definitive clinical interventions are available. Pyroglutamate aminopeptidase-1 (PGP-1), a potential inflammatory cytokine, has shown considerable potential as a biomarker for tracing the inflammatory process in vivo. However, its exact role in the enhanced visualization of RIRI in complex biological systems has yet to be fully established.

View Article and Find Full Text PDF

Permeability is a measure of the degree to which cells can transport molecules across biological barriers. Units of permeability are distance per unit time (typically cm/s), where accurate measurements are needed to define drug delivery in homeostasis and to model dysfunction occurring during disease. This perspective offers a set of community-led guidelines to benchmark permeability data across multidisciplinary approaches and different biological contexts.

View Article and Find Full Text PDF

The body weight-based thrombolytic medication strategy in clinical trials shows critical defects in recanalization rate and post-thrombolysis hemorrhage. Methods for perceiving thrombi heterogeneity of thrombolysis resistance is urgently needed for precise thrombolysis. Here, we revealed the relationship between the thrombin heterogeneity and the thrombolysis resistance in thrombi and created an artificial biomarker-based nano-patrol system with robotic functional logic to perceive and report the thrombolysis resistance of thrombi.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!