Background: Pancreatic cancer (PC), characterized with high growth rate and metastatic rate. It's urgently necessary to explore new mechanism of PC. Circular RNA/miRNA/mRNA network was widely reported to participate in the cancer progression.

Methods: In this research, circular RNA CDR1as (circCDR1as) was identified by microarray analysis and detected in pancreatic cancer (PC) tissues and cells. Transwell, colony-forming assay, nude mouse tumorigenicity assay were used to determine the function of circCDR1as in PC. Western blot, dual luciferase reporting test were applied to investigate the mechanism.

Results: We found that circCDR1as was highly expressed in PC tissues. The levels of circCDR1as in PC tissues and cells were higher than those in controls. CircCDR1as promoted the migration, invasion and proliferation of PC cells in vitro and tumor growth in vivo via mediating E2F3 expression by sponging miR-432-5p.

Conclusions: In conclusion, circCDR1as could promote the development of PC and might be a novel diagnostic target for PC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7885204PMC
http://dx.doi.org/10.1186/s12935-021-01812-3DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
12
circular rna
8
rna cdr1as
8
tissues cells
8
circcdr1as
6
cdr1as promotes
4
promotes tumor
4
tumor progression
4
progression regulating
4
regulating mir-432-5p/e2f3
4

Similar Publications

Antibody-drug conjugates (ADCs) hold promise to advance targeted therapy of pancreatic ductal adenocarcinoma (PDAC), where the desmoplastic tumor stroma challenges effective treatment. Here, we explored the urokinase plasminogen activator receptor (uPAR) as a candidate ADC target in PDAC, harnessing its massive tumoral and stromal expression in this stroma-dense tumor. We generated a site-specific ADC offering high-affinity, cross-species reactivity, and efficient internalization of the anti-uPAR monoclonal antibody, FL1, carrying a potent anthracycline derivative (PNU-158692).

View Article and Find Full Text PDF

Purpose: This study investigated epidemiologic features of patients with pancreatic cancer in Korea, according to the histologic subtypes.

Methods: The Korea Central Cancer Registry data on patients with pancreatic cancer from 1999 to 2019 were reviewed. The 101,446 patients with pancreatic cancer (C25 based on the International Classification of Diseases, 10th revision) were allocated according to the following morphological codes: A, endocrine; B, carcinoma excluding cystic and mucinous; C, cystic or mucinous; D, acinar cell; and E, sarcoma and soft tissue tumor.

View Article and Find Full Text PDF

Introduction: Learning health networks (LHNs) improve clinical outcomes by applying core tenets of continuous quality improvements (QI) to reach community-defined outcomes, data-sharing, and empowered interdisciplinary teams including patients and caregivers. LHNs provide an ideal environment for the rapid adoption of evidence-based guidelines and translation of research and best practices at scale. When an LHN is established, it is critical to understand the needs of all stakeholders.

View Article and Find Full Text PDF

Current models for the study of neuroendocrine tumours (NETs) are severely limited. While (e.g.

View Article and Find Full Text PDF

While the role of cancer stem cells (CSCs) in tumorigenesis, chemoresistance, metastasis, and relapse has been extensively studied in solid tumors, such as adenocarcinomas or sarcomas, the same cannot be said for neuroendocrine neoplasms (NENs). While lagging, CSCs have been described in numerous NENs, including gastrointestinal and pancreatic NENs (PanNENs), and they have been found to play critical roles in tumor initiation, progression, and treatment resistance. However, it seems that there is still skepticism regarding the role of CSCs in NENs, even in light of studies that support the CSC model in these tumors and the therapeutic benefits of targeting them.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!