Emerging biosensing technologies for improved diagnostics of COVID-19 and future pandemics.

Talanta

Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China. Electronic address:

Published: April 2021

Diagnostic tools play significant roles in the fight against COVID-19 and other pandemics. Existing tests, such as RT-qPCR, have limitations including long assay time, low throughput, inadequate sensitivity, and suboptimal portability. Emerging biosensing technologies hold the promise to develop tests that are rapid, highly sensitive, and suitable for point-of-care testing, which could significantly facilitate the testing of COVID-19. Despite that, practical applications of such biosensors in pandemics have yet to be achieved. In this review, we consolidate the newly developed diagnostic tools for COVID-19 using emerging biosensing technologies and discuss their application promise. In particular, we present nucleic acid tests and antibody tests of COVID-19 based on both conventional and emerging biosensing methods. We then provide perspectives on the existing challenges and potential solutions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7733602PMC
http://dx.doi.org/10.1016/j.talanta.2020.121986DOI Listing

Publication Analysis

Top Keywords

emerging biosensing
16
biosensing technologies
12
diagnostic tools
8
covid-19
5
emerging
4
technologies improved
4
improved diagnostics
4
diagnostics covid-19
4
covid-19 future
4
future pandemics
4

Similar Publications

Functional gold nanoparticles have emerged as a cornerstone in targeted drug delivery, imaging, and biosensing. Their stability, distribution, and overall performance in biological systems are largely determined by their interactions with molecules in biological fluids as well as the biomolecular layers they acquire in complex environments. However, real-time tracking of how biomolecules attach to colloidal nanoparticles, a critical aspect for optimizing nanoparticle function, has proven to be experimentally challenging.

View Article and Find Full Text PDF

Graphene quantum dots (GQDs) have emerged as promising materials for electrochemiluminescence (ECL) applications due to their unique optical and electronic properties. In this study, GQDs were synthesized via electrochemical exfoliation of graphite in a constant current density mode, enabling scalable production with controlled size and surface functionalization. GQDs-4 and GQDs-20, synthesized at applied current densities of 4 mA/cm2 and 20 mA/cm2 to the graphite electrode, respectively, were investigated on roles of surface states and exciplex dominated aggregation-induced emission (AIE) in their ECL performance.

View Article and Find Full Text PDF

Photonics bound states in the continuum (BICs) are peculiar localized states in the continuum of free-space waves, unaffected by far-field radiation loss. Although plasmonic nano-antennas squeeze the optical field to nanoscale volumes, engineering the emergence of quasi-BICs with plasmonic hotspots remains challenging. Here, the origin of symmetry-protected (SP) quasi-BICs in a 2D system of silver-filled dimers, quasi-embedded in a high-index dielectric waveguide, is investigated through the strong coupling between photonic and plasmonic modes.

View Article and Find Full Text PDF

Near-infrared-triggered release of self-accelerating cascade nanoreactor delivered by macrophages for synergistic tumor photothermal therapy/starvation therapy/chemodynamic therapy.

J Colloid Interface Sci

January 2025

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071 China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 China.

Macrophages have emerged as promising cellular vehicles for the delivery of therapeutic agents to tumor sites. However, the cytotoxicity of therapeutic agents toward the cellular carriers and the effective release of therapeutic agents at the tumor site remain the main challenges faced by macrophage-mediated drug delivery systems. Herein, a near-infrared (NIR)-triggered release of self-accelerating cascade nanoreactor (HCFG) delivered by macrophages (HCFG@R) was developed for synergistic tumor photothermal therapy (PTT)/starvation therapy (ST)/chemodynamic therapy (CDT).

View Article and Find Full Text PDF

Enhancing early breast cancer detection with APE1-triggered oligonucleotide probes and graphene oxide: The impact of variable AP site modification on sensitivity and specificity.

Talanta

January 2025

Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China. Electronic address:

There is a critical need for inclusive diagnostic platforms to enhance the accuracy of early breast cancer detection. Dysregulated microRNA-1246 (miR-1246), closely linked to the disease progression and recurrence, has emerged as a promising diagnostic and prognostic biomarker for BC. However, achieving simple, rapid, and ultrasensitive quantification of serum miRNAs remains significant challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!