The combination effect of Prominin1 (CD133) suppression and Oxaliplatin treatment in colorectal cancer therapy.

Biomed Pharmacother

Immunology Research Center, Tabriz University of Medical Sciences, Golgashtst., 5166/15731 Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Golgashtst., 5166/15731 Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Golgashtst., 5166/15731 Tabriz, Iran. Electronic address:

Published: May 2021

Colorectal cancer (CRC) is considered one of the leading types of cancer in the world. CD133, as a cancer stem cell marker, has a pivotal role in the development of drug resistance, migration, and stemness properties of CRC cells. This study was designed to check the combined effect of CD133 siRNA and Oxaliplatin on proliferation, migration, apoptosis, and stemness properties of CRC cells in the HT-29 cell line. MTT assay was performed to define the combined effect of CD133 siRNA and Oxaliplatin on the viability of HT-29 cells, and it showed that the combination of CD133 siRNA and Oxaliplatin could reduce the IC50 of this drug from 32.85 to 19.75 nmol. In order to figure out the effect of this combination therapy on CD133 expression at the gene and protein level, qRT-PCR and western blot were exploited, respectively. The results demonstrated that the silencing of CD133 could reduce the relative expression of this marker to about 0.00001 compared to the control group and reduce the protein level to 0.01. The ability of cell migration was tested by wound healing assay as well. Also, colony formation and sphere formation were conducted to assess the stemness properties in the combination group. Flow cytometry was conducted to investigate the apoptosis (15%), cell cycle (about 10% arresting in G0-G1 phase), and surface expression of CD133 in different groups (from 39.3% in the control group to 2.41 in the combination group). Finally, the expression of migration-, and stemness-associated genes were measured by qRT-PCR. We indicated that silencing of CD133 reduces the migration and stemness properties of colorectal cancerous cells. This suppression makes HT-29 cells more sensitive to Oxaliplatin and reduces the effective dose of this chemical drug. Therefore, the suppression of CD133 in combination with Oxaliplatin treatment might be a promising therapeutic approach in the treatment of colorectal cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2021.111364DOI Listing

Publication Analysis

Top Keywords

stemness properties
16
colorectal cancer
12
cd133 sirna
12
sirna oxaliplatin
12
cd133
10
oxaliplatin treatment
8
treatment colorectal
8
migration stemness
8
properties crc
8
crc cells
8

Similar Publications

Background: Cancer stem cells (CSCs) constitute a small and elusive subpopulation of cancer cells within a tumor mass and are characterized by stem cell properties. Reprogrammed CSCs exhibit similar capability to initiate tumor growth, metastasis, and chemo- and radio-resistance and have similar gene profiles to primary CSCs. However, the efficiency of cancer cell reprogramming remained relatively low.

View Article and Find Full Text PDF

Pancreatic cancer is a highly lethal malignancy with few effective treatment options. Connexin 31 (Cx31) is a membrane protein capable of forming hexameric channels to facilitate the exchange of metabolites and signaling molecules. Yet, the contribution of Cx31 to the onset and progression of pancreatic cancer remains to be understood.

View Article and Find Full Text PDF

Complete eradication of aggressive head and neck squamous cell carcinoma (HNSCC) still remains a major challenging problem due to numerous resistance properties of cancer stem cells (CSC) which is crucially responsible for tumor recurrence and metastasis. This challenge causes a high demand for the emergence of novel targeted treatment modalities for improved therapeutic efficacies. Phytochemicals derived from plants proves to be a wide reservoir of important drug candidates which have the potential to impede multiple aspects of malignant growth and progression.

View Article and Find Full Text PDF
Article Synopsis
  • Ovarian cancer is the most deadly gynecological cancer, with current chemotherapy often ineffective due to drug resistance, especially in advanced stages.
  • A new treatment using a nanoformulation called Bola/IM targets ovarian cancer stem cells (CSCs) more effectively than imatinib alone, utilizing a specific mechanism to inhibit cancer growth and spread.
  • The Bola/IM formulation shows promising results in lab models and enhances the effectiveness of cisplatin, making it a strong candidate for improving treatment for metastatic ovarian cancer.
View Article and Find Full Text PDF

Cigarette smoking is a well-known risk factor inducing the development and progression of various diseases. Nicotine (NIC) is the major constituent of cigarette smoke. However, knowledge of the mechanism underlying the NIC-regulated stem cell functions is limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!