In this study, hydrous manganese dioxide (HMO) modified poly(sodium acrylate) (PSA) hydrogel was produced for the first time to remove tetracycline(TC) and lead(Pb(II)) from water. The as-prepared composite was characterized using various techniques, such as SEM-EDS, FTIR, XRD, BET, and XPS, to elucidate the successful loading of HMO and analyze subsequent sorption mechanisms. Different influencing parameters such as adsorbent dose, initial concentration of adsorbates, reaction time, solution pH, and temperature were also investigated. The adsorption kinetic studies of both TC and Pb(II) removal indicated that equilibrium was achieved within 12 h, with respective removal rates of 91.9 and 99.5%, and the corresponding adsorption data were fitted to the second-order kinetics model. According to the adsorption isotherm studies, the sorption data of TC best fitted to the Langmuir isotherm model while the adsorption data of Pb(II) were explained by the Freundlich isotherm model. The maximum adsorption capacities of both TC and Pb(II) were found to be 475.8 and 288.7 mg/g, respectively, demonstrating excellent performances of the adsorbent. The uptake capacity of PSA-HMO was significantly influenced by the level of solution pH, in which optimum adsorption amount was realized at pH 4.0 in the TC and Pb(II) systems, respectively. Thermodynamic studies showed the process of TC and Pb(II) adsorptions were endothermic and spontaneous. Overall this study elucidated that PSA-HMO composite can be a promising candidate for antibiotics and heavy metal removal in water treatment applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2021.129902 | DOI Listing |
Environ Pollut
February 2025
School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China.
Antimony (Sb) mining and smelting activities caused Sb and arsenic (As) pollution in the soil, posing a threat to the ecosystem and human health. To remediate Sb and As in co-contaminated soil and realize the resource utilization of typical industrial solid waste, electrolytic manganese residue (EMR)-biochar composite (EB) was prepared from EMR and distillers grains by a facile one-step pyrolysis method. The immobilization effect of EB on Sb and As in soil was studied using a column leaching experiment.
View Article and Find Full Text PDFChemosphere
November 2024
Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA. Electronic address:
ACS Omega
August 2024
Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia.
MnO nanoparticles (NPs) find diverse applications in the fields of medicine, biomedicine, biosensors, water treatment and purification, electronics, electrochemistry, and photoelectronics. The production of MnO NPs was reported earlier through various physical, chemical, and green routes, but no studies have still been performed on their biosynthesis from . We synthesized manganese oxide NPs, i.
View Article and Find Full Text PDFSci Total Environ
February 2024
U.S. Geological Survey, Pennsylvania Water Science Center, Bridgeville, PA, United States of America.
Nutrient pollution from agriculture and urban areas plus acid mine drainage (AMD) from legacy coal mines are primary causes of water-quality impairment in the Susquehanna River, which is the predominant source of freshwater and nutrients entering the Chesapeake Bay. Recent increases in the delivery of dissolved orthophosphate (PO) from the river to the bay may be linked to long-term increases in pH, decreased acidity of precipitation, and decreased acidity, iron, and aluminum loading from widespread AMD. Since the 1950s, baseline pH increased from ~6.
View Article and Find Full Text PDFSci Rep
June 2023
National Agricultural and Food Centre, Research Institute of Plant Production, Grassland and Mountain Agriculture Institute, Mládežnícka 36, 974 21, Banská Bystrica, Slovakia.
The expanding demand for new critical raw materials can lead to their increased release to the environment in the form of emerging environmental contaminants (EECs). However, there has never been a comprehensive study that takes into account the total EEC content, the content of various EEC fractions, their behaviour in floodplain soils, and potential ecological and human health risks. The occurrence, fractions, and influencing factors of the seven EECs (Li, Be, Sr, Ba, V, B, Se) originating from historical mining in floodplain soils of various ecosystems (arable lands, grasslands, riparian zones, contaminated sites) were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!