Mapping multiple endocrine disrupting activities in Virginia rivers using effect-based assays.

Sci Total Environ

Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States. Electronic address:

Published: June 2021

Water sources are frequently contaminated with natural and anthropogenic substances having known or suspected endocrine disrupting activities; however, these activities are not routinely measured and monitored. Phenotypic bioassays are a promising new approach for detection and quantitation of endocrine disrupting chemicals (EDCs). We developed cell lines expressing fluorescent chimeric constructs capable of detecting environmental contaminants which interact with multiple nuclear receptors. Using these assays, we tested water samples collected in the summers of 2016, 2017 and 2018 from two major Virginia rivers. Samples were concentrated 200× and screened for contaminants interacting with the androgen (AR), glucocorticoid (GR), aryl hydrocarbon (AhR) and thyroid receptors. Among 45 tested sites, over 70% had AR activity and 60% had AhR activity. Many sites were also positive for GR and TRβ activation (22% and 42%, respectively). Multiple sites were positive for more than one type of contaminants, indicating presence of complex mixtures. These activities may negatively impact river ecosystems and consequently human health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8026610PMC
http://dx.doi.org/10.1016/j.scitotenv.2021.145602DOI Listing

Publication Analysis

Top Keywords

endocrine disrupting
12
disrupting activities
8
virginia rivers
8
sites positive
8
mapping multiple
4
multiple endocrine
4
activities
4
activities virginia
4
rivers effect-based
4
effect-based assays
4

Similar Publications

Pyriproxyfen, villain or good guy? A brief review.

Arch Endocrinol Metab

January 2025

Universidade Federal do Rio de Janeiro Instituto de Ciências Biomédicas Laboratório de Endocrinologia Experimental Rio de JaneiroRJ Brasil Laboratório de Endocrinologia Experimental (LEEx), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil.

Pyriproxyfen (PPF) acts as a juvenile growth regulator, interfering with normal metamorphosis and blocking the development of insects into adulthood. Although the World Health Organization (WHO) considers the use of PPF at a concentration of 0.01 mg/L as unlikely to pose health risks, recent studies have unveiled potential risks associated with PPF exposure to non-target organisms.

View Article and Find Full Text PDF

Effects of tributyltin on placental and reproductive abnormalities in offspring.

Arch Endocrinol Metab

January 2025

Universidade Federal do Espírito Santo Departamento de Morfologia VitóriaES Brasil Departamento de Morfologia, Universidade Federal do Espírito Santo, Vitória, ES, Brasil.

Tributyltin (TBT) is an organotin compound and a common persistent environmental pollutant with endocrine-disrupting chemical (EDC) actions. It can accumulate in the environment at various concentrations throughout the food chain in the ecosystem, posing a risk to human health, especially during critical periods such as gestation and fetal and offspring development. In this review, we report the results of studies describing the consequences of TBT exposure on placental and reproductive parameters in offspring of both sexes.

View Article and Find Full Text PDF

Environmental conditions influence the maternal deposition of hormones into eggs, which is hypothesized to adaptively modify developmental outcomes in offspring. However, most ecosystems harbour environmental contaminants capable of disrupting endocrine signaling, and maternal exposure to these compounds has the potential to further alter offspring traits. Studies rarely examine maternally derived hormones and contaminants along with offspring phenotypes, and we know little about their interrelationships and potential interactions.

View Article and Find Full Text PDF

Background: Cancer remains a leading cause of death worldwide. Environmental factors, specifically endocrine-disrupting chemicals (EDCs), like phthalates, are increasingly being linked to cancer development. Phthalates, widely used in consumer products, can activate the aryl hydrocarbon receptor (AhR).

View Article and Find Full Text PDF

Thyroid Endocrine Disrupting Potential of Fluoxetine in Zebrafish Larvae.

J Appl Toxicol

January 2025

Changjiang Basin Ecology and Environment Monitoring and Scientific Research Center, Changjiang Basin Ecology and Environment Administration, Ministry of Ecology and Environment, Wuhan, China.

Fluoxetine (FLX), a typical selective serotonin reuptake inhibitors, has been frequently detected in aquatic environment and wild fish. However, little is known about its effect on thyroid endocrine system. In the present study, zebrafish (Danio rerio) embryos were exposed to 1, 3, 10, and 30 μg/L of FLX for 6 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!