Water use efficiency in terrestrial ecosystem over East Asia: Effects of climate regimes and land cover types.

Sci Total Environ

Dept. of Water Resources, Graduate School of Water Resources, Sungkyunkwan University, Suwon 16419, Republic of Korea. Electronic address:

Published: June 2021

Water use efficiency (WUE) is an environmental factor to account for the metabolism of terrestrial ecosystems using various climate systems and vegetation types. It is estimated by the ratio of gross primary productivity (GPP) to evapotranspiration (ET), the largest carbon and water fluxes with respect to plant respiration. In this study, the WUE was calculated using GPP and ET from the community land model version 4.0 (CLM4.0), inclusive of the prognostic carbon-nitrogen model in the community earth system model (CESM). The estimated WUE in East Asia was analyzed for climate zones, land cover types, and water- and energy-limited zones, with aridity index (AI). Spatial variations from 2001 to 2015 in annual WUE gradually increased as latitude decreased, though small year-to-year differences appeared between monthly GPP and ET. Monthly WUE was lower in summer than fall because the water loss rate in summer was higher than the carbon assimilation increase. The WUE under arid conditions (AI<0.5) was lower than under humid conditions. The GPP, ET, and WUE were higher in the forest, savannas, cropland, and permanent wetland with dense vegetation or abundant water resources than in other land cover types. The WUE was lower in water-limited zones than in energy-limited zones due to the low amount of water to use for the physical processes of GPP and ET. Based on this study, we identified general spatial and temporal variations of carbon fluxes in East Asia with various climate zones and land cover types.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.145519DOI Listing

Publication Analysis

Top Keywords

water efficiency
8
east asia
8
land cover
8
cover types
8
wue
6
water
4
efficiency terrestrial
4
terrestrial ecosystem
4
ecosystem east
4
asia effects
4

Similar Publications

Ultrasonically Activated Liquid Metal Catalysts in Water for Enhanced Hydrogenation Efficiency.

ACS Appl Mater Interfaces

January 2025

Department of Chemistry and Materials Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.

Hydride (H) species on oxides have been extensively studied over the past few decades because of their critical role in various catalytic processes. Their syntheses require high temperatures and the presence of hydrogen, which involves complex equipment, high energy costs, and strict safety protocols. Hydride species tend to decompose in the presence of atmospheric oxygen and water, which reduces their catalytic activities.

View Article and Find Full Text PDF

Enhancing Biodegradation of Insoluble High Molecular Weight Polycyclic Aromatic Hydrocarbons in Macroemulsion (ME) Bioreactors with a Liquid-Liquid Interface.

ACS Appl Mater Interfaces

January 2025

College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China.

Due to the low bioavailability and insolubility of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) in aqueous solutions, their degradation efficiency is significantly limited in wastewater treatment and environmental remediation. To address this challenge, we designed oil-in-water (O/W) macroemulsion (ME) bioreactors with mixed surfactants (Tween-80 and Triton X-100), -butanol, corn oil, and () to enhance the degradation efficiency of pyrene. Owing to the higher solubility of pyrene in MEs, it could be easily adsorbed onto hydrophobic groups on the cell surface.

View Article and Find Full Text PDF

Enhanced bacterial cellulose production by indigenous isolates: Insights from mutagenesis and evolutionary techniques.

Int J Biol Macromol

January 2025

Iranian Research Organization for Science and Technology (IROST), Sh. Ehsani Rad St., Enqelab St., Ahmadabad Mostoufi Rd., Azadegan Highway, P. O. Box 33535-111, Tehran 3313193685, Iran.

Bacterial cellulose, with mechanical strength, high water absorption, and crystallinity, is used in eco-friendly packaging, wound dressings, and drug delivery systems. Despite its potential, industrial-scale production is limited by inefficiency and high costs, requiring high-yield strains and optimized growth conditions. This study found that indigenous isolates produce superior bacterial cellulose compared to standard strains.

View Article and Find Full Text PDF

Evaluation of biobased materials in the development of polymeric membranes for water capture and purification.

Int J Biol Macromol

January 2025

Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain.

The current study addresses the pressing issue of unsustainable water management, particularly in regions experiencing high water stress. It focuses on examining the viability of polymeric membranes composed of biobased materials, mainly chitosan, for various sustainable water management solutions. The membranes evaluated in the study were blends of PVC with either chitosan-silica or charcoal-silica, designed to enhance their functionality and performance.

View Article and Find Full Text PDF

Photochemical regulation of microcystin synthesis and release in cyanobacteria Microcystis aeruginosa by triplet state dissolved organic matter.

Sci Total Environ

January 2025

College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China. Electronic address:

The increasing frequency of cyanobacterial blooms, particularly those induced by Microcystis aeruginosa (M. aeruginosa), poses severe economic, ecological and health challenges due to the production of microcystins (MCs). Environmental parameters such as light and nutrient availability influence MCs production, while the role of dissolved organic matter (DOM) photochemical processes in regulating these remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!