Salmonella enterica is a pathogenic bacterium responsible for intestinal illness and systemic diseases such as typhoid and paratyphoid fevers. Among clinical manifestation classification, non-typhoidal Salmonella is mainly known as foodborne pathogen associated with the consumption of fecal contaminated food and water. Even though Salmonella hosts include humans and warm-blooded animals, it has been found in non-host environments as river water where the bacteria use different strategies to fitness the environment persisting and establishment. Now with the availability of WGS and bioinformatics tools, we can explore bacterial genomes with higher resolution to increase our understanding of specific genetic signatures among environmental and clinical isolates, being the goal of this work. Pangenome construction allowed the detection of specific environmental and clinical gene clusters related to metabolism and secretion systems as the main signature respectively. Specifically, D-galactonate degradation pathway was observed mainly in environmental genomes while T3SS and flagellum genes were detected for all clinical but not for all environmental isolates. Gene duplication and pseudogenes accumulation were detected as the main adaptation strategy for environmental isolates; thus, isolation source may play an important role in genome plasticity, conferring a selective advantage to survive and persist for environmental Salmonella isolates. Intact prophage sequences with cargo genes were observable for both isolation sources playing an important role in virulence contribution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meegid.2021.104771DOI Listing

Publication Analysis

Top Keywords

non-typhoidal salmonella
8
salmonella enterica
8
environmental clinical
8
environmental isolates
8
environmental
6
salmonella
5
genomic signatures
4
signatures adaptation
4
adaptation natural
4
natural settings
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!