Nuclear localization of endothelial nitric oxide synthase and nitric oxide production attenuates aphidicolin-induced endothelial cell death.

Nitric Oxide

Department of Molecular Medicine, College of Medicine, Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, South Korea. Electronic address:

Published: May 2021

Aphidicolin represses DNA replication by inhibiting DNA polymerase α and δ, which leads to cell cycle arrest and cell damage. Nitric oxide (NO) generated by endothelial NO synthase (eNOS) plays an essential role in maintenance of endothelial integrity including endothelial cell (EC) survival. Previously, we reported that aphidicolin increases NO production in bovine aortic ECs (BAECs). However, the role of aphidicolin-induced NO on EC viability and its molecular mechanism remain to be elucidated. Treatment with 20 μM aphidicolin for 24 h reduced BAEC viability by ~40%, which was accompanied by increased NO production, phosphorylation of eNOS at Ser1179 (p-eNOS-Ser), and eNOS protein expression. The aphidicolin-increased eNOS expression and p-eNOS-Ser were not altered by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM), a cell permeable and specific intracellular Ca chelator. Co-treatment with 2-phenyl-4, 4, 5, 5,-tetramethylimidazoline-1-oxyl 3-oxide (PTIO), an NO scavenger, or Nω-Nitro-l-arginine methyl ester hydrochloride (l-NAME), a NOS inhibitor, exacerbated aphidicolin-stimulated BAEC death. Knockdown of eNOS gene expression using siRNA aggravated aphidicolin-induced BAEC death. However, exogenous NO donors including S-nitroso-l-glutathione (GSNO) or diethylenetriamine NONOate (DETA NO) had no effect on aphidicolin-decreased BAEC viability and aggravated BAEC viability at higher doses. Interestingly, aphidicolin accumulated eNOS protein in the active form, p-eNOS-Ser, in the nucleus. When cells were ectopically transfected with a wild-type (WT)-eNOS gene, aphidicolin induced significant localization of the protein product in the nucleus. Additionally, aphidicolin-elicited cell death was significantly reversed in WT-eNOS gene-transfected BAECs. Furthermore, overexpression of the eNOS gene containing nuclear localization signal (NLS) but not nuclear export signal (NES) significantly attenuated aphidicolin-induced BAEC death. When G2A-eNOS mutant lacking myristoylation at Gly2 was transfected, its intracellular distribution became diffuse and included the nucleus. Finally, expression of N-myristoyltransferase 2 (NMT2) but not NMT1 significantly decreased in aphidicolin-treated BAECs. Taken together, our results suggest that aphidicolin attenuates BAEC death in part by increasing nuclear eNOS localization and NO production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.niox.2021.02.001DOI Listing

Publication Analysis

Top Keywords

baec death
16
nitric oxide
12
baec viability
12
nuclear localization
8
endothelial cell
8
cell death
8
enos
8
enos protein
8
enos gene
8
aphidicolin-induced baec
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!