AI Article Synopsis

  • Arbuscular mycorrhizal fungi (AMF) form a crucial symbiosis with over 70% of land plants, enhancing nutrient uptake for plants and providing carbohydrates for fungi.
  • This symbiosis dates back over 400 million years and is believed to have played a key role in plant colonization on land.
  • The study of the genome of Geosiphon pyriformis, which has a unique endosymbiosis with nitrogen-fixing cyanobacteria, aims to uncover the origins and evolutionary mechanisms of this important relationship.

Article Abstract

Arbuscular mycorrhizal fungi (AMF) (subphylum Glomeromycotina) are among the most prominent symbionts and form the Arbuscular Mycorrhizal symbiosis (AMS) with over 70% of known land plants. AMS allows plants to efficiently acquire poorly soluble soil nutrients and AMF to receive photosynthetically fixed carbohydrates. This plant-fungus symbiosis dates back more than 400 million years and is thought to be one of the key innovations that allowed the colonization of lands by plants. Genomic and genetic analyses of diverse plant species started to reveal the molecular mechanisms that allowed the evolution of this symbiosis on the host side, but how and when AMS abilities emerged in AMF remain elusive. Comparative phylogenomics could be used to understand the evolution of AMS. However, the availability of genome data covering basal AMF phylogenetic nodes (Archaeosporales, Paraglomerales) is presently based on fragmentary protein coding datasets.Geosiphon pyriformis (Archaeosporales) is the only fungus known to produce endosymbiosis with nitrogen-fixing cyanobacteria (Nostoc punctiforme) presumably representing the ancestral AMF state. Unlike other AMF, it forms long fungal cells ("bladders") that enclose cyanobacteria. Once in the bladder, the cyanobacteria are photosynthetically active and fix nitrogen, receiving inorganic nutrients and water from the fungus. Arguably, G. pyriformis represents an ideal candidate to investigate the origin of AMS and the emergence of a unique endosymbiosis. Here, we aimed to advance knowledge in these questions by sequencing the genome of G. pyriformis, using a re-discovered isolate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2021.01.058DOI Listing

Publication Analysis

Top Keywords

arbuscular mycorrhizal
12
mycorrhizal symbiosis
8
amf
6
ams
5
genome geosiphon
4
geosiphon pyriformis
4
pyriformis reveals
4
reveals ancestral
4
ancestral traits
4
traits linked
4

Similar Publications

Contrasting effects of arsenic on mycorrhizal-mediated silicon and phosphorus uptake by rice.

J Environ Manage

January 2025

Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.

Silicon (Si) and arbuscular mycorrhizal fungi (AMF) increase plant resistance to various environmental stresses, including heavy metal (and metalloid) toxicity. Although Si and AMF each independently enhance plant tolerance, the nature of their interactions and their combined impacts on nutrient uptake, especially in the context of toxic elements such as arsenic (As), remains to be elucidated. This study investigated AMF-mediated regulation of plant nutrient uptake under As stress using rice, a model Si-accumulating plant.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi mitigate cadmium stress in maize.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, and College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; School of Agriculture and Environment, and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia. Electronic address:

Soil cadmium (Cd) pollution poses a significant environmental threat, impacting global food security and human health. Recent studies have highlighted the potential of arbuscular mycorrhizal (AM) fungi to protect crops from various heavy metal stresses, including Cd toxicity. To elucidate the tolerance mechanisms of maize in response to Cd toxicity under AM symbiosis, this study used two maize genotypes with contrasting Cd tolerance: Zhengdan958 (Cd-tolerant) and Zhongke11 (Cd-sensitive).

View Article and Find Full Text PDF

Root and mycorrhizal nutrient acquisition strategies in the succession of subtropical forests under N and P limitation.

BMC Plant Biol

January 2025

Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China.

Background: Nutrient limitation is a universal phenomenon in terrestrial ecosystems. Root and mycorrhizal are critical to plant nutrient absorption in nutrient-limited ecosystems. However, how they are modified by N and P limitations with advancing vegetation successions in karst forests remains poorly understood.

View Article and Find Full Text PDF

Legume plants can interact with nitrogen-fixing rhizobia bacteria and arbuscular mycorrhizal fungi (AMF) simultaneously, forming a tripartite symbiotic association. Co-inoculation studies performed on a variety of legumes have shown that rhizobia and AMF influence each other when they co-occur in tripartite association and affect host plant nutrition and performance. Although single plant-microbe interactions have been extensively studied, our understanding in the field of tripartite interactions is insufficient and current knowledge cannot predict the symbiotic outcome, which appears to depend on many parameters.

View Article and Find Full Text PDF

The production of medicinal plants under stressful environments offers an alternative to meet the requirements of sustainable agriculture. The action of mycorrhizal fungus; Funneliformis mosseae and zinc in stimulating growth and stress tolerance in medicinal plants is an intriguing area of research. The current study evaluated the combined use of nano-zinc and mycorrhizal fungus on the physiochemical responses of Dracocephalum moldavica under salinity stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!