Recent research has indicated an increase in the likelihood and impact of tree failure. The potential for trees to fail relates to various biomechanical and physical factors. Strikingly, there seems to be an absence of tree risk assessment methods supported by observations, despite an increasing availability of variables and parameters measured by scientists, arborists and practitioners. Current urban tree risk assessments vary due to differences in experience, training, and personal opinions of assessors. This stresses the need for a more objective method to assess the hazardousness of urban trees. The aim of this study is to provide an overview of factors that influence tree failure including stem failure, root failure and branch failure. A systematic literature review according to the PRISMA guidelines has been performed in databases, supported by backward referencing: 161 articles were reviewed revealing 142 different factors which influenced tree failure. A meta-analysis of effect sizes and p-values was executed on those factors which were associated directly with any type of tree failure. Bayes Factor was calculated to assess the likelihood that the selected factors appear in case of tree failure. Publication bias was analysed visually by funnel plots and results by regression tests. The results provide evidence that the factors Height and Stem weight positively relate to stem failure, followed by Age, DBH, DBH squared times H, and Cubed DBH (DBH3) and Tree weight. Stem weight and Tree weight were found to relate positively to root failure. For branch failure no relating factors were found. We recommend that arborists collect further data on these factors. From this review it can further be concluded that there is no commonly shared understanding, model or function available that considers all factors which can explain the different types of tree failure. This complicates risk estimations that include the failure potential of urban trees.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886209PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246805PLOS

Publication Analysis

Top Keywords

tree failure
24
failure
13
tree
10
factors
9
failure potential
8
tree risk
8
urban trees
8
stem failure
8
root failure
8
failure branch
8

Similar Publications

Pulmonary overlap syndrome in a patient with bronchial asthma.

BMJ Case Rep

January 2025

Pulmonary, Critical Care and Sleep Medicine, ESICPGIMSR, New Delhi, Delhi, India.

Allergic bronchopulmonary aspergillosis (ABPA) is a disease of immunocompetent patients, and invasive pulmonary aspergillosis is seen in immunocompromised patients. Hence, pulmonary overlap syndrome presenting with ABPA and invasive aspergillosis is extremely rare. We report a case of well-controlled bronchial asthma who presented with acute exacerbation and hypoxaemic respiratory failure.

View Article and Find Full Text PDF

Objective: Extracorporeal membrane oxygenation (ECMO) is among the most resource-intensive therapies in critical care. The COVID-19 pandemic highlighted the lack of ECMO resource allocation tools. We aimed to develop a continuous ECMO risk prediction model to enhance patient triage and resource allocation.

View Article and Find Full Text PDF

Basis of single-seed formation in chestnut: cytomorphological observations reveal ovule developmental patterns of .

PeerJ

January 2025

Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan Province, China.

Background: Many plants, including those commonly found in the Fagaceae family, produce more flowers and ovules than mature fruits and seeds. In , an ovary contains 16-24 ovules, but only one develops into a seed. The other ovules abort or otherwise fail to fully develop, but the reason for this is unknown.

View Article and Find Full Text PDF

Introduction: Dental implants are routinely used to replace missing teeth. Therefore, the primary aim of the present study was to assess the single-unit implant failure rate over a period of seven years from 2015 to 2021, with a minimum of two years post-implant follow-up. The secondary aim was to identify the risk factors associated with implant failure using machine learning decision tree regression and Kaplan-Meier survival analyses.

View Article and Find Full Text PDF

Tree shrew as a new animal model for musculoskeletal disorders and aging.

Bone Res

January 2025

State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.

Intervertebral disc degeneration (IDD), osteoarthritis (OA), and osteoporosis (OP) are common musculoskeletal disorders (MSDs) with similar age-related risk factors, representing the leading causes of disability. However, successful therapeutic development and translation have been hampered by the lack of clinically-relevant animal models. In this study, we investigated the potential suitability of the tree shrew, a small mammal with a close genetic relationship to primates, as a new animal model for MSDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!