Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Understanding the patterns and underlying mechanisms that come into play when employees exchange their knowledge is crucial for their work performance and professional development. Although much is known about the relationship between certain global network properties of knowledge-flow networks and work performance, less is known about the emergence of specific global network structures of knowledge flow. The paper therefore aims to identify a global network structure in blockmodel terms within an empirical knowledge-flow network and discuss whether the selected local network mechanisms are able to drive the network towards the chosen global network structure. Existing studies of knowledge-flow networks are relied on to determine the local network mechanisms. Agent-based modelling shows the selected local network mechanisms are able to drive the network towards the assumed hierarchical global structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886156 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246660 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!