A binder is an important component in lithium-ion batteries and plays a significant role in maintaining the properties of active substances. Most studies in the field of binders have only focussed on physical properties such as bonding performance. Here, a polyacrylic acid-modified binder was designed and adapted to Li[NiCoMn]O, which enhanced the electrochemical stability of Li[NiCoMn]O from 30.2 to 66.6% (300 cycles at 1 C). We for the first time discovered that this was caused by a chemical reaction between polyacrylic acid and the residual lithium on the surface during the cycling, which formed a lithium propionic acid coating layer and maintained the stability of the layered structure.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c22052DOI Listing

Publication Analysis

Top Keywords

polyacrylic acid-modified
8
acid-modified binder
8
insights mechanism
4
mechanism enhanced
4
enhanced performance
4
performance li[nicomn]o
4
li[nicomn]o polyacrylic
4
binder binder
4
binder component
4
component lithium-ion
4

Similar Publications

This study aims to design microgels for controlled drug release via enzymatically generated pH changes in the presence of glucose. Modern medicine is focused on developing smart delivery systems with controlled release capabilities. In response to this demand, we present the synthesis, characterization, and enzymatically triggered drug release behavior of microgels based on poly(acrylic acid) modified with glucose oxidase (GOx) (p(AA-BIS)-GOx).

View Article and Find Full Text PDF

Water pollution by organic dyes represents a major health and environmental issue. Despite the fact that peptide-based hydrogels are considered to be optimal absorbents for removing such contaminants, hydrogel systems often suffer from a lack of mechanical stability and complex recovery. Recently, we developed an enzymatic approach for the preparation of a new peptide-based magnetogel containing polyacrylic acid-modified γ-FeO nanoparticles (γ-FeONPs) that showed the promising ability to remove cationic metal ions from aqueous phases.

View Article and Find Full Text PDF

Removal of cationic dyes from aqueous solution using polyacrylic acid modified hemp stem.

Environ Sci Pollut Res Int

January 2024

Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan, 430078, China.

Water pollution caused by dyes is a pressing environmental challenge due to their persistence and difficulty in degradation. Herein, an anionic adsorbent (HS-PAANa) was synthesized by grafting polyacrylic acid (PAA) onto the agricultural waste-hemp stem (HS). The obtained HS-PAANa adsorbent exhibited rapid adsorption kinetics, high adsorption capacity, and a favorable preference for cationic dyes, such as methylene blue (MB) and crystal violet (CV).

View Article and Find Full Text PDF

In this paper, a polyacrylic elastomer latex with butyl acrylate (BA) as the core and methyl methacrylate (MMA) copolymerized with glycidyl methacrylate (GMA) as the shell, named poly(BA-MMA-GMA) (PBMG), was synthesized by seeded emulsion polymerization. Cellulose nanocrystal (CNC) was dispersed in the polyacrylic latex to prepare PBMG/CNC dispersions with different CNC contents. The dried product was mixed with polylactic acid (PLA) to fabricate PLA/PBMG/CNC blends.

View Article and Find Full Text PDF

We prepared a novel nanogel consisting of poly(acrylic acid) (PAA) and pullulan (Pull) via a facile and green irradiation protocol. Synthesized nanogels were modified with bovine serum albumin (BSA) and folic acid (FA) and then loaded with doxorubicin (DOX) to obtain a delivery system with tumor-specific targeting ability and enhanced biocompatibility. In-vitro DOX release was investigated at different pH values, and it was found that DOX release was higher in acidic media, which is an advantage for the internalization of nanoparticles in acidic tumor environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!