Background: Although injuries experienced during hurricanes and other tropical cyclones have been relatively well-characterized through traditional surveillance, less is known about tropical cyclones' impacts on noninjury morbidity, which can be triggered through pathways that include psychosocial stress or interruption in medical treatment.
Methods: We investigated daily emergency Medicare hospitalizations (1999-2010) in 180 US counties, drawing on an existing cohort of high-population counties. We classified counties as exposed to tropical cyclones when storm-associated peak sustained winds were ≥21 m/s at the county center; secondary analyses considered other wind thresholds and hazards. We matched storm-exposed days to unexposed days by county and seasonality. We estimated change in tropical cyclone-associated hospitalizations over a storm period from 2 days before to 7 days after the storm's closest approach, compared to unexposed days, using generalized linear mixed-effect models.
Results: For 1999-2010, 175 study counties had at least one tropical cyclone exposure. Cardiovascular hospitalizations decreased on the storm day, then increased following the storm, while respiratory hospitalizations were elevated throughout the storm period. Over the 10-day storm period, cardiovascular hospitalizations increased 3% (95% confidence interval = 2%, 5%) and respiratory hospitalizations increased 16% (95% confidence interval = 13%, 20%) compared to matched unexposed periods. Relative risks varied across tropical cyclone exposures, with strongest association for the most restrictive wind-based exposure metric.
Conclusions: In this study, tropical cyclone exposures were associated with a short-term increase in cardiorespiratory hospitalization risk among the elderly, based on a multi-year/multi-site investigation of US Medicare beneficiaries ≥65 years.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8887827 | PMC |
http://dx.doi.org/10.1097/EDE.0000000000001337 | DOI Listing |
Environ Epidemiol
February 2025
Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Background: Tropical cyclones pose significant health risks and can trigger outbreaks of diarrheal diseases in affected populations. Although the effects of individual hazards, such as rainfall and flooding, on diarrheal diseases are well-documented, the complex multihazard nature of tropical cyclones is less thoroughly explored. To date, no dedicated review comprehensively examines the current evidence and research on the association between tropical cyclones and diarrheal diseases.
View Article and Find Full Text PDFSci Rep
January 2025
College of Ocean and Meteorology & South China Sea Institute of Marine Meteorology, Guangdong Ocean University, 524088, Zhanjiang, Guangdong, China.
Accurate classification of tropical cyclone (TC) tracks is essential for evaluating and mitigating the potential disaster risks associated with TCs. In this study, three commonly used methods (K-means, Fuzzy C-Means, and Self-Organizing Maps) are assessed for clustering historical TC tracks that originated in the South China Sea from 1949 to 2023. The results show that the K-means method performs the best, while the Fuzzy C-Means and Self-Organizing Maps methods are also viable alternatives.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Deakin Marine Research and Innovation Centre, School of Life and Environmental Sciences, Deakin University, Burwood Campus, Burwood, VIC 3125, Australia; Centre for Nature Positive Solutions, School of Science, RMIT University, Melbourne, VIC 3000, Australia.
Mangrove forests play an important role in climate change mitigation and adaptation, globally recognized as natural climate solution. The protection and restoration of mangrove ecosystems are especially important to Small Island Developing States, like Seychelles, due to their vulnerability to the impacts of climate change, such as sea level rise and tropical cyclones. Therefore, it is crucial for countries like Seychelles to develop baseline information on the status of their mangrove forests to guide conservation and management actions.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Environmental Studies and Geology, Bryn Mawr College, Bryn Mawr, PA, USA.
Geologic records of tropical cyclones (TCs) in low-energy, back-barrier environments are established by identifying marine sediments via their allochthonous biogeochemical signal. These records have the potential to reconstruct TC intensity and frequency through time. However, modern analog studies are needed to understand which biogeochemical indicators of overwash sediments are best preserved and how post-depositional changes may affect their preservation.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2024
Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address:
How tropical cyclone (TC) activity varies in response to a changing climate is widely debated. The accumulated cyclone energy (ACE) is one of the indicators of TC activity and has attracted considerable attention because of its close relationship with the damages caused by TCs. Previous studies have focused on detecting long-term trends in global ACE; however, the results are inconclusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!