The class C G protein-coupled sweet taste receptor (STR) is responsible for the perception of sweet-tasting molecules. Considered an obligate heterodimer, it consists of taste 1 receptor 2 and taste 1 receptor 3 subunits. Interest in the STR has steadily grown, especially since its discovery in extraoral tissues hints at a metabolic role for the receptor. It is now known that many pharmacologically exploitable binding sites exist across the extracellular and transmembrane regions of both subunits of the STR, indicative of its potential amenability to pharmacotherapeutic modulation. In this review, we briefly describe the structural characteristics and functional relevance of the STR. Then, from a molecular pharmacology perspective, we dissect the research surrounding the regulation of STR surface expression and signal transduction, in both oral and extraoral tissues, and discuss the potential for the exploitation of biased agonists for the STR. We find that despite 20 years of research into the STR, the target remains frustratingly enigmatic. Not only are the mechanisms controlling and regulating the surface expression of the STR unclear, but also research into the full repertoire of signaling partners of the STR is at present inconclusive. Critically, the influence of receptor polymorphisms (including those associated with sugar consumption) on the molecular pharmacology of the receptor remains hitherto unexplored. Finally, we provide recommendations on the reporting of reference sequence identification numbers to avoid incorrect attribution of wild-type to these biologically significant polymorphisms, which we argue may have led to some of the inconsistencies in the field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/febs.15768 | DOI Listing |
Pharmacol Res
January 2025
BRIC-Institute of Bioresources and Sustainable Development (BRIC-IBSD), Department of Biotechnology, Government of India, Imphal, Manipur-795001, India; BRIC-IBSD, Mizoram Center, Aizawl, Mizoram 796005, India; BRIC-IBSD, Meghalaya Center, Shillong, Meghalaya-793009, India. Electronic address:
Natural resources have been used for food and medicine since the beginning of human civilization, and they have always been a low-cost, easily accessible source for individuals. Northeast region of India (NER) represents a significant portion of India's flora and fauna. Marginality, fragility, inaccessibility, ethnicity, and cultural diversity thrived in the region, resulting in the richest reservoir of genetic variation of bioresources.
View Article and Find Full Text PDFHeliyon
January 2025
Paediatric Unit, Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.
Background: Cystic fibrosis is a heterogeneous disease whose severity and symptoms largely depend on the functional impact of mutations in the cystic fibrosis transmembrane conductance regulator gene. Other genes may also modulate the clinical manifestations and complications associated with cystic fibrosis. Genetic variants of the bitter taste receptor TAS2R38 have been shown to contribute to the susceptibility and severity of chronic rhinosinusitis.
View Article and Find Full Text PDFSci Rep
January 2025
Department of pharmacy, School of Clinical Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China.
Taste and smell disorders (TSDs) can induce diminished interest in food, inadequate nutrient intake, and emotional irregularities, particularly among cancer patients. Previous research found that the main culprits of TSD development in cancer patients are cytotoxic drugs such as taxol, fluorouracil, cyclophosphamide, and anthracycline-based drugs. The advent of targeted drugs such as vascular endothelial growth factor receptor-tyrosine kinase inhibitors (VEGFR-TKIs) has significantly extended the survival time of cancer patients, and thus widely used in clinical practice.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Otolaryngology, University of Texas Medical Branch at Galveston, Galveston, TX, USA.
Objective: With altered sense of taste being a common symptom of coronavirus disease 2019 (COVID-19), the main objective was to investigate the presence and distribution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) within the tongue over the course of infection.
Methods: Golden Syrian hamsters were inoculated intranasally with SARS-CoV-2 and tongues were collected at 2, 3, 5, 8, 17, 21, 35, and 42 days post-infection (dpi) for analysis. In order to test for gross changes in the tongue, the papillae of the tongue were counted.
Sci Rep
January 2025
Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, AHF 252, Los Angeles, CA, 90089-0372, USA.
Habitual consumption of low-calorie sweeteners (LCS) during juvenile-adolescence can lead to greater sugar intake later in life. Here, we investigated if exposure to the LCS Acesulfame Potassium (Ace-K) during this critical period of development reprograms the taste system in a way that would alter hedonic responding for common dietary compounds. Results revealed that early-life LCS intake not only enhanced the avidity for a caloric sugar (fructose) when rats were in a state of caloric need, it increased acceptance of a bitterant (quinine) in Ace-K-exposed rats tested when middle-aged.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!