Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chemodynamic therapy is an emerging tumor therapeutic strategy. However, the anticancer effects are greatly limited by the strong acidity requirements for effective Fenton-like reaction, and the inevitably "off-target" toxicity. Herein, we develop an acidity-unlocked nanoplatform (FePt@FeO @TAM-PEG) that can accurately perform the high-efficient and tumor-specific catalysis for anticancer treatment, through dual pathway of cyclic amplification strategy. Notably, the pH-responsive peculiarity of tamoxifen (TAM) drug allows for the catalytic activity of FePt@FeO to be "turn-on" in acidic tumor microenvironments, while keeping silence in neutral condition. Importantly, the released TAM within cancer cells is able to inhibit mitochondrial complex I, leading to the upregulated lactate content and thereby the accumulated intracellular H , which can overcome the intrinsically insufficient acidity of tumor. Through the positive feedback loop, large amount of active FePt@FeO nanocatalyzers are released and able to access to the endogenous H O , exerting the improved Fenton-like reaction within the more acidic condition. Finally, such smart nanoplatform enables self-boosting generation of reactive oxygen species (ROS) and induces strong intracellular oxidative stress, leading to the substantial anticancer outcomes in vivo, which may provide a new insight for tumor-specific cascade catalytic therapy and reducing the "off-target" toxicity to surrounding normal tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202014415 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!