A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and initial validation of a deep learning algorithm to quantify histological features in colorectal carcinoma including tumour budding/poorly differentiated clusters. | LitMetric

Aims: To develop and validate a deep learning algorithm to quantify a broad spectrum of histological features in colorectal carcinoma.

Methods And Results: A deep learning algorithm was trained on haematoxylin and eosin-stained slides from tissue microarrays of colorectal carcinomas (N = 230) to segment colorectal carcinoma digitised images into 13 regions and one object. The segmentation algorithm demonstrated moderate to almost perfect agreement with interpretations by gastrointestinal pathologists, and was applied to an independent test cohort of digitised whole slides of colorectal carcinoma (N = 136). The algorithm correctly classified mucinous and high-grade tumours, and identified significant differences between mismatch repair-proficient and mismatch repair-deficient (MMRD) tumours with regard to mucin, inflammatory stroma, and tumour-infiltrating lymphocytes (TILs). A cutoff of >44.4 TILs per mm carcinoma gave a sensitivity of 88% and a specificity of 73% in classifying MMRD carcinomas. Algorithm measures of tumour budding (TB) and poorly differentiated clusters (PDCs) outperformed TB grade derived from routine sign-out, and compared favourably with manual counts of TB/PDCs with regard to lymphatic, venous and perineural invasion. Comparable associations were seen between algorithm measures of TB/PDCs and manual counts of TB/PDCs for lymph node metastasis (all P < 0.001); however, stronger correlations were seen between the proportion of positive lymph nodes and algorithm measures of TB/PDCs. Stronger associations were also seen between distant metastasis and algorithm measures of TB/PDCs (P = 0.004) than between distant metastasis and TB (P = 0.04) and TB/PDC counts (P = 0.06).

Conclusions: Our results highlight the potential of deep learning to identify and quantify a broad spectrum of histological features in colorectal carcinoma.

Download full-text PDF

Source
http://dx.doi.org/10.1111/his.14353DOI Listing

Publication Analysis

Top Keywords

deep learning
12
learning algorithm
12
colorectal carcinoma
12
algorithm quantify
8
histological features
8
features colorectal
8
differentiated clusters
8
algorithm measures
8
manual counts
8
counts tb/pdcs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!