Direct deuteration of hinokitiol and its mechanistic study.

Biosci Biotechnol Biochem

Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan.

Published: February 2021

Hinokitiol has a broad antibacterial activity against bacteria and fungi. While its biosynthetic pathway has been intensively studied, its dynamics in natural environments, such as biodegradation pathway, remain unclear. In this study, the authors report a direct deuterium labeling of hinokitiol as a traceable molecular probe to serve those studies. Hinokitiol was subjected to the H2-Pd/C-D2O conditions and deuterated hinokitiol was obtained with excellent deuteration efficiencies and in moderate yield. The 1H and 2H NMR spectra indicated that all ring- and aliphatic hydrogens except that on C-6 were substituted by deuterium. According to the substrate scope and computational chemistry, deuteration on tropolone ring was suggested to proceed via D+-mediated process, and which was supported by the results of the experiment with trifluoroacetic acid and Pd(TPP)4. On the other hand, the deuteration on aliphatic group was predicted to be catalyzed by Pd(II) species.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bbb/zbaa031DOI Listing

Publication Analysis

Top Keywords

hinokitiol
5
direct deuteration
4
deuteration hinokitiol
4
hinokitiol mechanistic
4
mechanistic study
4
study hinokitiol
4
hinokitiol broad
4
broad antibacterial
4
antibacterial activity
4
activity bacteria
4

Similar Publications

Background: Iron is an essential micronutrient for cell survival and growth; however, excess of this metal drives ferroptosis. Although maternal iron imbalance and placental hypoxia are independent contributors to the pathogenesis of preeclampsia, a hypertensive disorder of pregnancy, the mechanisms by which their interaction impinge on maternal and placental health remain elusive.

Methods: We used placentae from normotensive and preeclampsia pregnancy cohorts, human H9 embryonic stem cells differentiated into cytotrophoblast-like cells, and placenta-specific preeclamptic mice.

View Article and Find Full Text PDF

Objectives: The present study aimed to assess the antiproliferative and pro-apoptotic effects of hinokitiol in osteosarcoma cells and targeting of glycogen synthase kinase 3 (GSK3).

Materials And Methods: The (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to evaluate the cytotoxic potential of hinokitiol in osteosarcoma cells. Various concentrations of hinokitiol (5, 10, 20, 40, 60, and 80 μg/mL) were tested, and the half-maximal inhibitory concentration (IC) was calculated.

View Article and Find Full Text PDF

Hinokitiol (HK), a monoterpenoid that naturally occurs in plants belonging to the Cupressaceae family, possesses important biological activities, including an anticancer effect. This review summarizes its anticancer potential and draws possible molecular interventions. In addition, it evaluates the biopharmaceutical, toxicological properties, and clinical application of HK to establish its viability for future advancement as a dependable anticancer medication.

View Article and Find Full Text PDF

Effect of hinokitiol in ameliorating oral cancer: in vitro and in silico evidences.

Odontology

November 2024

Department of Microbiology, Dr. ALM Post Graduate Institute of Basic Medical Science, University of Madras, Chennai, Tamil Nadu, 600113, India.

The study aimed to evaluate the anticancer potential of hinokitiol in treating oral cancer by using in vitro models and examining its interaction with the Pim-1 protein through in silico methods. Hinokitiol was applied to KB-1 oral squamous carcinoma cells, where the half-maximal inhibitory concentrations (IC) was determined. Morphologic changes in treated cells were observed using phase contrast microscopy, while acridine orange/ethidium bromide (AO/EB) staining was used to assess nuclear changes and apoptosis.

View Article and Find Full Text PDF

Correction: Studies on the antifungal effects of Hinokitiol on Candida albicans: inhibition of germ tube formation and synergistic pharmacological effects of miconazole.

Odontology

November 2024

Course of Clinical Science, Field of Oral and Maxillofacial Surgery and Systemic Medicine, Oral and Maxillofacial Surgery, Graduate School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!